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Abstract

This work presents a statistically adaptive spatial multiplexing scheme for time-varying correlated
MIMO channels. Unlike the conventional spatially uncorrelated block fading channel model, both chan-
nel variation in each data block and spatial correlation are accommodated in the design. The proposed
system continuously transmits packets with identical structure. Each packet consists of a training phase
followed by a data transmission phase. The training signal is used to predict instantaneous channel
state at the receiver. In each symbol period of data transmission phase, the transmitter simultaneously
transmits multiple data streams, which are decoded at the receiver based on the predicted channel state
The transmitter is assumed to know only the channel statistics, with which the power and rate for each
data stream as well as the number of data streams are adjusted in each symbol period to achieve a targe
bit error rate. The packet length is further optimized to maximize the spectral efficiency. The results
reveal that the rate-maximizing transmission strategy makes a judicious diversity-multiplexing tradeoff
by allocating power to an optimum number of data streams. Furthermore, the optimum packet length
decreases according to the order MIMQ@MISO, SIMO} > SISO and decreases for fewer antennas in

each case.

Index Terms— Multi-antenna systems, time-varying channels, adaptive modulation

. Introduction

Multiple antennas at the transmitter and receiver have been shown to dramatically improve the capac-
ity and reliability of wireless communication links and are often referred to as multiple-input multiple-
output (MIMO) systems [1, 2]. However, design of communication strategies for time-varying channels
is challenging due to temporal channel variations that lead to outdated channel state information at both
ends. The impact of feedback delay on spatial multiplexing in time-varying MIMO channels has been
studied in [3, 4], which assume that error-free but delayed instantaneous channel information is avail-
able at the transmitter. The use of correction matrices at the receiver is suggested by [3] to partially

compensate the effect of delay, while [4] incorporates the channel uncertainty due to time variations in
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the precoder design. In the space-time coded adaptive modulation scheme [5], the transmitter optimizes
the symbol modulation levels in orthogonal space-time codes based on the feedback of instantaneous
received SNR, and the effect of feedback delay has been investigated. In [6], Alamouti coded data are
transmitted along two orthogonal basis beams with optimum power allocation and modulation levels. In
contrast to [3]-[5], the transmitter is assumed to only know the instantaneous estimated channel infor-
mation with feedback delay, which better matches the realistic situation. In [7], the proposed adaptive
transmit beamformer exploits the predicted channel information to mitigate the effect of feedback delay,
and the results show that a critical value of normalized prediction error is a good indicator of perfor-
mance degradation. Compared with the time-varying MIMO channels, the time-varying SISO channels
have been studied more extensively. Some representative work is described here. The pilot-based es-
timation of time-varying SISO channels and its impact on receiver performance have been studied in
[8, 9]. A closed-form lower bound of average channel capacity is derived in [10] in terms of channel
estimation error variance, and the optimal pilot symbol spacing and power allocation are determined by
maximizing this lower bound. The effects of feedback delay and error on the performance of adaptive
systems with instantaneous channel feedback have been investigated in [11, 12].

This work is motivated by the following two reasons. First, most existing research on time-varying
MIMO systems assumes a spatially uncorrelated block fading channel model, which ignores tempo-
ral channel variation in each data block as well as the spatial correlation. This will in general lead to
inaccurate performance predictions. Secondly, most existing work assumes that the transmitter knows
the instantaneous channel information, which can be either fed back from the receiver in FDD systems
[7] or estimated at the transmitter in TDD systems [3]. However, both methods will induce delay and
error in the channel information, which will inevitably degrade performance. In this work, a statisti-
cally adaptive spatial multiplexing scheme is proposed for narrowband time-varying correlated MIMO
channels and has the following features: (1) The design is based on the virtual channel representation
[15, 16], which jointly incorporates temporal channel variations and spatial correlation; (2) Instead of

instantaneous channel information, the transmitter is assumed to only know the channel statistics, which



usually change at much slower time scales and can thus be tracked more easily and reliably; (3) Unlike
conventional adaptive modulation schemes whose power and rate for each data stream are invariant in
each data block, the proposed adaptive spatial multiplexing scheme adjusts the power and rate for each
data stream as well as the number of data streams in every symbol period based on the channel statistics
and the data block length is further optimized to maximize the spectral efficiency. The results reveal
that the rate-maximizing transmission strategy makes a judicious diversity-multiplexing tradeoff by al-
locating power to an optimum number of data streams. Furthermore, the optimum data block length
decreases according to the order MIMQMISO, SIMO} > SISO and decreases for fewer antennas

in each case, since each virtual channel coefficient is contributed by more paths with larger Doppler
spread due to the coarser spatial resolution, and the larger spread reduces the channel coherence time i
virtual domain and hence the optimum data block length. The proposed statistics-based design is also
compared to that with perfect instantaneous Channel State Information at Transmitter (CSIT), which
on average improves the rate by 24%. Therefore, the former might be a good complexity-performance
tradeoff by avoiding the instantaneous feedback of CSIT, which will both reduce the resource and suffer
from the imperfections in practice.

The paper is organized as follows. Section Il describes the virtual channel representation for time-
varying correlated MIMO channels. Section Il provides an overview of the proposed scheme as well as
the design objective. The optimization of system components is elaborated in Section IV. For compar-
ison, the scheme with perfect instantaneous channel information at transmitter is described in Section
V. Numerical results including the performance comparison of both schemes are presented in Section

VI, and Section VIl contains concluding remarks.

ll. Signaling in Virtual Angle Domain

Consider a MIMO system with Uniform Linear Arrays (ULA) at both ends with transmit an-

tennas andVy receive antennas. For a narrowband time-varying MIMO channelyihe 1 received



signal vector at time can be written as
y.(t) = He(t)x.(t) + n.(t), 0<t<T Q)

wherex,.(t) is the Ny x 1 transmitted signal vecton..(t) is the i.i.d. Gaussian noise vector, afd
presents the overall signaling duration. Tkg x N channel matrix at timé is modeled as
L
H(t) = ) Biar(Or))ay (6r,)e™" (2)
=1

wherelL is the number of paths. For tlg¢h path, the array steering and response vectors are given by
aT<9Tl) — [17 €*j27r9T,l’ o ’€7J2W(NT*1)9T,Z]T’ aR<eR l) _ [1, e*j27r91«1,l7 o 767j27T(NR*1)9R,l:|T (3)

where the parametéris related to the physical path anglg¢ asé = dsing/\ with A andd denoting
the wavelength and the antenna spacing, respectively. Without loss of generality (WLOG), we focus
on the critical spacingl = \/2 in this paper and, hencé,= siny/2 € [—0.5,0.5]. The impact of
antenna spacing on capacity and diversity performance has been investigated in [15]. The complex path
amplitude; = a;e’# has envelopey; > 0 and phasey; uniformly distributed in[0, 27]. WLOG, the
transmitter and receiver are assumed to move in the array-broadside directions at speetsiof;.
The resultant Doppler frequency shift of théh path is given by, = (vgrC0SHr,; + v7COSH7;) /A With
the maximum shift agmax= (vr + vr)/A. Moreover{«}, {0r,;}, {07,}, {v:} are fixed for a given
scattering environment, whilgp,} randomly change for different channel realizations [13, 14].

In contrast to (1), signaling can be realized in virtual angle domain (beamspace) instead of in spatial

domain. The signal relation in virtual angle domain can be written as
y(t) = H(t)z(t) + n(t) (4)

where the virtual channel matrid(t) = AZH,.(t)Ar is the 2D Discrete Fourier Transform (DFT) of
H.(t), and the transformed vectoggt) = ALy, (), z(t) = Az (t), n(t) = Aln.(t) represent the

received, transmitted, and noise vectors in beamspacelNEkeVz and Nyx N unitary DFT matrices

Imeasured w.r.t. the array broadside.



are given byAR = [aR(§R71), C. 7aR(§R,NR)]/V NR andAT = [GT(§T71), C. 7aT(§T7NT)]/V NT with

the fixed receive and transmit virtual angles defined as

7p:]-7"'7NT (5)

where, WLOG, we assume the number of antennas is odd and défire(Ny — 1)/2 + 1, Ny =
(Nr — 1)/2 + 1. The signaling in virtual angle domain is illustrated in Fig.1. Through DFTpttie
element ofx(¢) is transmitted from the-th transmit beam directed aip,p, while theg-th element of
y(t) denotes the signal captured by théh receive beam ﬁg,q. As implied by (4), the virtual channel
coefficient H(q, p,t) in H(t) represents the channel coupling between ik transmitted element
z,(t) and theg-th received elemeny,(t) in beamspace.

One important property of virtual channel coefficients is their approximately uncorrelated nature.

This can be interpreted via virtual path partitioning, which introduces the following subsets of paths

g ={l: —1/(2Ng) < (Or1 — Ory) < 1/(2NR)}, q=1,...,Ng 6)
—{l: =1/(2Ny) < (07, — 07,) < 1/(2N7)}, p=1,..., Ny

corresponding to the spatial resolutionsfr = 1/Ng andAf; = 1/Np. The partitioning in case of
Nr= Nr=3isillustrated in Fig.2, where each dot represents a path angular pagitierér;) in the
2D domain[—0.5,0.5] x [-0.5 x 0.5]. The 3 receive beams partition the paths into 3 r¢Wg ,}>_,
with height1/3, and the 3 transmit beams partition the paths into 3 colufhs }>_, with width 1/3.

Based on the above patrtitioning, each virtual channel coefficient in (4) can be approximated as

L

1 % TV
H(q,p.t) = \/mZﬁlaR('gRQ)aR<9Rl)aT(‘ng)aT (07,)€”*™" ~ \/ NNy Zﬁeﬂ "t (7)

1€Sq.p

wheresS, , = Sg, N St , represents the paths jointly captured by thil transmit beam and theth

receive beam, as illustrated in Fig.2. The mathematical reasoning of the approximation can be found in
[15]. It indicates thaf H(q, p, t)} for different(q, p)’s are contributed by disjoint subsets of paths and,
hence, they are uncorrelated due to the independent path amplitudes. Based on the uncorrelated nature

it has been shown that the capacity-achieving input covariance matrix in virtual déaift )z ()]
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has a diagonal structure [20, 21]. This motivates the consideration of transmitting independent data
streams via different virtual angles in the proposed scheme.

Furthermore, the temporal correlationiéfq, p, t) can be derived from (7) as

Tq,p<t - t/) é E [H(Q7p7 t)H* (q7p7 t/)] = /Gq7p(y)ej2ﬂy(t_t,)d7/ (8)

where the path Doppler power spectrum conditionedqsop) can be approximated as
1 & - 2 ~ 2
CoplV) = 537 2 |af Oran(0r)| |af (0r)ar(@r,)| 6(v— )
- ©)
~ NpNr Z alé(v —u).

l€Sy,p

The above approximation implies that the conditional Doppler power spectrum is contributed by the
paths inS,, and hence has a smaller spread than that in SISO channel, which is contributed by all
paths. The smaller spread yields a slower decay of the corresponding temporal correlation and hence
slows down the effective channel variation. This explains why MIMO systems can reduce the training

update frequency, as reflected by the numerical results.

lll.  System Design Overview

The system continuously transmits and receives space-time packets with identical structure. WLOG,
the structure of the first packet is shown in Fig. 3. It has a training phase\Wyiteymbol periods fol-
lowed by a data transmission phase wiNh symbol periods. The fixed symbol period is denoted as
T,, and the time O represents the end of training phase. The packet is transmitted and received in virtual
angle domain. WLOG, thé&/; transmit virtual angles are sorted in descending order according to their
statistical strengtis In thep-th training symbol period, a training symbol is transmitted from the beam
at thep-th transmit virtual angle with full powes. This impliesN,, < Nr. Accordingly, the transmitted
training signal matrix iD =, /ply,, with Iy, as the identity matrix. In the-th data symbol period, a

k(n)x 1 signal vectorr(n) is launched from the firgt(n) transmit virtual beams.

2which means? | H(:, 1,t) |2 > ,..., > E|H(:, Nz, t)||%, whereH(:, p, t) represents thg-th column ofH(¢) and

|- |% denotes the Frobenius norm. It can be shown that the order is independéot afgiven scattering environment.
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The system block diagram in theth data symbol period is illustrated in Fig.4. At the transmitter
side, the transmitted signal vector in virtual angle domain is formegd(ag = A'/?(n)s(n), where

A(n) represents a diagonal power-shaping matrix. Agx1 data vectos(n) consists of independent

QAM symbols withE[s(n)s™ (n)] =1, andR,(n) represents the number of bits in th¢h symbol.

Accordingly, the covariance matrix af(n) has a diagonal structure, which is capacity-achieving [20,

21]. The vectorz(n) is further zero-padded and DFT transformed to the spatial domain for antenna

transmissionz.(n) = Ar[z”(n) : 07]7, where0 is a(Ny—k(n)) x 1 all-zero vector. Due to the DFT,

the k(n) data symbols irx(n) are respectively launched from the fikgt:) transmit virtual beams. At

the receiver side, the signal vector on tkig receive antennas is transformed to the beamspace through

y(n)=Ay.(n), wherey(n) consists of signals captured by the, receive virtual beams. The vector

y(n) is then fed to a linear decoder to estimate the data vestor) = G(n)y(n). The decoder is

formed based on the predicted virtual channel m&/ﬁr(n), which is generated by feeding thé; x V;,.

signal matrixZ received in training phase to a linear channel prediEtor).

The general design objective is to maximize the average rate per @Q&gtzgj(jf R,(n)/(Ny+

Np) subject to the transmit power constraint and the BER requirement for each data stream. The

optimization is ovel.(n), G(n), A(n), {R,(n)}, k(n), andNp with channel statistics known at both

sides. The procedure is briefly described below.

At the receiver side:

Step 1 In each data symbol period,(n) is formed by minimizing the Mean Square Error (MSE)
between the true channel state and its prediction. The MSE is averaged over channel statistics.
Therefore L(n) is determined by channel statistics and hence is the same for different packets;

Step 2 The decodet(n) is formed by minimizing the MSE betweettn) ands(n), which is averaged
over s(n) and the noise. As shown latdg(n) is a function ofH(n) andA(n). Therefore, it
varies with different realizations @ (n) in different packets;

At the transmitter side:

Step 1 For a given number of data stream:), A(n) is optimized by minimizing the MSE between



s(n) ands(n), which is averaged over channel statistics, since the transmitter only knows channel
statistics. Next, the rate of theth streamR, (n) is chosen as the maximum number of bits keep-
ing the corresponding average BER under a target BER. Both) and{R,(n)} are optimized
over channel statistics and hence do not change across the packets;

Step 2 The k(n) is further optimized by maximizing the total rate in theth data symbol period
Z'Ijﬂ"‘f R,(n), and the corresponding(n) and{Rp(n)}’;g are selected as the final designs;

Step 3 The data block lengthV, is optimized by maximizing the average rate per packet defined earlier

k(n)

o1 in the expression. For simplicity, the

with the optimumk(n) and the correspondingR,(n)}
length of training phasé/,,. can be first fixed ad/r, though the optimum value can be smaller as

described later;

The proposed statistics-based design has the following two features. (1) It has low complexity
compared with the CSIT-based design [3]-[7]: instantaneous channel feedback is not required, and the
same optimized packet structure is applied over the period when the channel statistics are static; (2) The
temporal and spatial channel correlations are exploited by optimizing the packet length and the number

of data streams, which significantly improves the average rate, as shown in the results;

V. Optimization of System Components

WLOG, we focus on the first packet and list major design assumptions as follows.

e A1) For simplicity, H(¢) in the training phase is assumed to be the same as that at time O.
However, extension to the case considering channel variation in the training phase is feasible;

e A2) Virtual channel matrixH(¢) in the n-th data symbol period in Fig. 3 is assumed to be the
same adI(nT}), which is denoted aHl(n) hereafter;

e A3) H(q,p,t) has zero-mean Gaussian distribution. It can be seen from (7Y#that,t) is
a weighted sum of independent path amplitudes. According to the central limit theorem, the
distribution would be approximately Gaussian if the number of paths is large;

e A4) {H(q,p,t)} are independent for differerty, p)’s: E[H(q,p,t)H* (¢, p',t")] = 14,(t —
t') 0g—q 0p—p With 7 ,(t — t') specified in (8). This assumption stems from (7);
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e A5) Bothreceiver and transmitter know the temporal channel correla{iqq;ﬁnTs), n=1,...,
wa} for all (¢, p)’s, whereN,,,,. denotes an upper bound of the data block length Those
temporal correlations represent the channel statistics needed in the design;

e A6) To get a tractable BER expression, the interference plus noise seen by each data stream at
the linear decoder output is assumed to be Gaussian. This assumption is justified in [23] and has
been widely applied in linear transceiver designs [26];

e A7) The number of data streamén) has an upper bound of mitVg, N1}, which is the maxi-

mum rank ofH(n);

A. Optimization of Channel Predictor

For simplicity, the length of training phase is first assumed taVhe= Np. With A1, the Ny x Np
received training matrix in virtual angle domain can be writteasH(0)D + W, whereD =, /ply,
and theNy x Ny noise matrixXW has i.i.d. complex Gaussian entries with zero mean and varigice

The predicted virtual channel matrix in theth data symbol period is given by
H(n)=Ve(h(n)), h(n)=L(n)z, z=vedqZ)= (D" @ Iy,) h(0) + w=/ph(0) +w  (10)

whereL(n) is the Nrk Ny x Nr Ny linear channel predictog; = vedZ), h(0) = vedH(0)), andw =
veq W) are obtained by stackidghe columns o, H(0), andW, respectivelyveq-) represents the
inverse operation of vég, andz is specified via the identity v ABC) = (C” ® A) veqB) with ®
denoting the Kronecker product. The MMSE channel predictor can be derived from the orthogonality
principle [18] as

L,(n) = arg min2||L(n)z — hin) |}

(11)

-1

= E [h(n)z"] (E [zzH])_l = /p(n) (p0) + 02T, Ny )
whereh(n) = vedH(n)) with H(n) given in A2, and the expectation is over bothandw. Ac-

cording to A4, Q(n) = E [h(n)h™(0)] has a diagonal structure and, henkg(n) is diagonal as

*Mathematicallyz =vedZ)=[z{, ..., 2% ]" with z, as thep-th column ofZ, andvet(z) =Z.



well. It can be shown that the€p — 1) Ny + ¢)-th elements oﬁ(n) and z correspond tdH (g, p, n)
and Z(q, p), respectively, and th&p — 1) Ny + ¢)-th diagonal element dk,(n) can be specified as
Tap(nTs)\/p/ (rep(0)p + o2). The above relations together witi{n) = L,(n)z give the expressions

of ﬁ(q,p, n) and the associated prediction error as

H(q,p, Tl) = 7“(”,(0)/) + O-YQL Tq,p<0)p + 0'% (H(Q7p7 O)\/ﬁ + W(Qap)) (12)

Z(q,p) =

~

E(Qapa TL) = H(Qapan) - H(Qap7n)
and, according t&\ 3, both have zero-mean complex Gaussian distribution
ﬁ(%p, n) ~ CN (07 aZ(Qap7 n)) ’ 82(Q7pa n) = |rq7p(nTs)|2P/ (Tq,p(o)p + 0721)

E(Q7p7 n) ~ CN (07 62((]7]77 TZ)) ) €2<Q7p7 ’I’L) - Tq,p<0) - 6'\2((],])7 n)

(13)

The matrix version of (12) is given B (n) = H(n) + E(n) with H(n) known at the receiver. Based

on A4 and (12), we have the following properties

E ﬁ(Q7p7n)ﬁ*(q/7p/7n) IEQ(Q7p7n)5qq/5pp/
(14)

E [E(Q7p7 n)E* (q/7p/7 n)] = EQ(CL b, n)(sqq’(spp’7 E [E(Q>p7 H)H*(q/, p/7 TL) =0
which indicate thaH (n) andE(n) have independent entries, and they are also mutually independent.
The channel estimation for correlated MIMO channels has been studied in [19], which shows that the
optimum training signal corresponds to transmitting beams in successive symbol intervals along differ-
ent transmit angles as assumed in Fig.3. The proposed scheme also considers the channel variation ir

each data block, and the channel in thth symbol period is predicted by the predictor in (11).

B. Optimization of Decoder and Power-Shaping Matrix

As described in Section I, the transmitted signal vector in virtual angle dom@in= A'/%(n)s(n)
has dimensiotk(n), which is simplified a%: in the following. The correspondinyzx1 received signal

vector in virtual domain can be written as

A~

y(n) = Hi(n)z(n) + n(n) = Hi(n)z(n) + v(n) (15)
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where the matrix with subscrigt contains the first columns of the original matrixp(n) has i.i.d.
complex Gaussian noise entries with zero mean and varighdée virtual channel matrix is decom-
posed ad,(n) = H,(n)+Ex(n), andv(n) = E,(n)z(n)+n(n) represents the effective noise vector.

The MMSE decoder can be derived as

Go(n) = arg MinE || G(n)y(n) — s(n) || = E [s(n)y" (n)] (E [y(n)y" (n)])
G 3 (16)
— AV (n)E (n) (F () A () Ef (n) + An))
where the expectation is ov&),(n), s(n), n(n), and the effective noise covariance matrix is given by

A(n) = E [v(n)v(n)] = E [Ex(n)A(n)E] (n)] + 021x, an
=diag(tr (Z:(n)A(n)), ..., tr (Zx,(n)A(n))) + 021y,
whereX,(n)=E [Ef (¢,:,n)Ex(q,:,n)] =diag(e*(¢, 1,n), ..., €*(q, k,n)) with E4(g, :, n) as theg-th

row of E;(n) ande?(q, p,n) given in (13). The MSE for the optimization d(n) is defined as

MSE(n) = Etr [(Go(n)y(n) — 5(n)) (Go(n)y(n) — s(n))H]

— Etr (Ik + AYV2(n)HE (n) A~ (n)HL (n) AY2(n) (18)

<Etr (Ik + AYV2(n)HE (n) A~ (n)H (n) AY2(n)
A(n) =tr(A(n)) diag(e2(1, n),...,e(Ng, n)) + 021y, €(q,n)= rrlmaxkez(q,p, n)

where the readers can refer to [25, 26] for the 2nd step, the inequality stemsXftemn> A(n) as
well as the properties of matrix ordering [22], and the expectation is sey, n(n), Ex(n), and
ﬁk(n), since the transmitter only knows channel statistics. The optid\gn) is aimed at minimizing
MSE(n). However, the optimization may not be convex due to the teff® f(n)A(n)) in (17) and

the inverse oA (n) in (18). ThereforeA(n) is optimized by minimizing the upper bound df S E(n)
Ay(n, k) = argmi?MSE(n), s.t. t{A(n)) =p (19)

where the variablé emphasizes that the solution is conditionedkorit can be shown with the tech-
niques in [20] that (19) is convex programming and, therefore, the global minimizer can be reliably

obtained via optimization routines.
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C. Optimization of Transmission Rates

With the power-shaping matrix, we next optimize the transmission rates d@f stieeams. The SINR
corresponding to the-th received stream &f(n) = G,(n)y(n) can be straightforwardly shown as
-1
o(n) = Ap(n)HY (2, p, ) (Z A ()R (:, 4, n)H () + A(ﬂ)) Hy(,p,n)  (20)
J#p

whereH, (:, p, n) represents the-th column ofHy,(n), and)\,(n) denotes the-th diagonal element of
A,(n, k). With A6, a tight BER approximation for QAM constellation with points is given by [27]:
BER(i,7,(n)) = 0.2 exp(—1.5v,(n)/(2° — 1)). Since the transmitter only knows channel statistics,
the rate of thep-th stream in then-th data symbol period is defined as the maximum number of bits

keeping the average BER under the target BER

Ry(n,k)= max i, st BER,(n)=E[BER(i,v,(n))] < BERy, (21)

i€{0,1,2,...}
where the expectation is ovﬁk(n), and the variablé emphasizes that the solution is conditioned on
k. Deriving a closed-form expression &%,(n, k) is difficult, since the distribution of,(n) for arbi-
trary channel statistics is unknown. The asymptotic distribution for iITIg;I(n) with large number of
antennas can be found in [28], and the distribution for iﬁci(n) with arbitrary number of antennas is
given in [29] but is complicated for numerical evaluation. Therefétgn, k) is numerically searched
for general MIMO channels. However, closed-form solutions can be obtained for SISO, MISO, and

SIMO channels with arbitrary correlations. They are ignored due to the space limitation.

D. Optimization of Data Stream Number and Data Block Length

The number of data strearh€an be optimized to maximize the total rate in thth data symbol period
k

ko(n) = argkneng R,(n,k), Si={1,...,min{Np, Np}} (22)

where miq N, Ni} represents the upper boundiofs described iA 7. The optimized power shaping

matrix and transmission rates associated Wijtin) are selected as the final designs

Ao(n) = Ao(n, ko(n)), Ro(n) = [Ri(n,ko(n)), ..., Rim(n, ko(n))}T (23)

12



To assess the performance, we define the average rate per packet as

ko(n)

AR(Np) = L2 Bo(m) E:Rnk N, = max k() (24)

ND+NtT ’

where R,(n) denotes the instantaneous total rate insikth data symbol period, and the number of
training symbol periodsv,, is equal to the number of transmit angles involved in the data transmission.
Note that/V,, could be less thaiv; initially assumed in Section IV-A, since the data transmission may

not use allN; angles. The optimum data block length is the one maximizing the average rate

= arg maxAR(ND) So={1,..., Npaz} (25)

Npé€eSs

whereN,,... represents the maximum length for searchiigand can be predetermined by simulating

typical channels in practice.

V. Adaptation with Instantaneous Feedback

The statistics-based design in Section Il only requires channel statistics at the transmitter. However,
most existing work [3]-[7] assumes the availability of Channel State Information at Transmitter (CSIT).
It would be instructive to compare the statistics-based design to the design with CSIT. In the latter case,
the transmitter is assumed to know the received training signal ni&atnwhich is perfectly fed back
from the receiver without delay and error. Therefore, the transmitter can know the predicted virtual
channel matrixH (n) via (10).

The transceiver with CSIT has the same structure as Fig.4 except that the power-shaping matrix
and the zero-padding block are replaced by a linear precoder. The optimization is also the same as the
statistics-based design except that the precoder and rates are optimized for each realiﬁ(im)] of

For a fixed number of data streamsthe N x 1 received signal vector can be written as
y(n) = H(n)F(n)s(n) + n(n) = H(n)F(n)s(n) + v(n) (26)

whereF (n) is the Ny x k precoder, an@(n) =E(n)F(n)s(n) + n(n). Egn (26) will reduce to (15) if
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F(n)=[AY2(n) i Opnp—1]T. The precoder is aimed at minimizing the following MSE

MSE <ﬁ(n)> = tr (Ik + FH(n)ﬁH(n)A1(n)ﬁ(n)F(n)>—1 -

< tr (T + B ()AL (n) A~ (n)E(n)F(n))
which is derived in the same way as (18) except that the expectation is ﬁﬁmjmsince the transmitter
now knowsH(n). Let V&V be the eigen-decomposition B (n) A~ (n)H(n). The upper bound
of MSE (ﬁ(n)) can be minimized by choosidg(n) =V [®'/2 0, 1)]” with the optimum power-
shaping matrix® =diag(¢1, - . ., ¢x) specified in [25]. Furthermore, the SINR of theh stream at the
MMSE decoder output can be straightforwardly shown as
-1
w(n) =F (., p,mH (n) (Z H(n)F(:. j,n)F" (:, j.n)H" (n) + A<n>> H(n)F(;,p.n) (28)
J#p
whereF'(:, p, n) denotes the-th column ofF(n). The maximum rate of the-th stream under the BER
requiremerttis given by R, (n, k) = [log, (1 — 1.5v,(n)/In(BERy,,/0.2))], and the optimum number
of data streams is searched according,0:) = arg Qgng’;zl R,(n, k). In contrast to the statistics-
based desigrE¥' (n), {R,(n, k)}, andk,(n) are optimized for a giveﬁ(n) instead of its statistics. The
corresponding average rate can be expressed as

Np ko(n)
AR(Np)= ZND +R]ér) . R,(n)=E (Z R,(n, ko(n))) (29)

where the expectation is (ﬁ(n), and the training block lengthv;, is equal to the number of non-
vanishing transmit virtual anglgsThis is because unlike the statistics-based design, the precoder and
rates are optimized for each estimald@). To estimatdd(n), the pilot symbols have to be sent from

all non-vanishing transmit virtual angles.

“Mathematically,R,, (n, k) :mazxi, S.L. BER(i,7vp(n)) < BER,, With BER(i,v,(n)) defined above (21).
1€
Swhich equals the number of columnsi{n) whose Frobenious norms averaged over channel statistics are not zero.
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VI. Results and Discussions

A. Simulation Parameters and Procedure

We considerL = 100 paths whose arrival and departure andlés;, 6} are randomly uniformly
distributed within a 2D angular region in the virtual domaiffmax, Omaxd X [—Omax, Omaxl» Wheredmax
determines the angular spread. Each path has the same su@ngth/Z, which implies the channel
normalizationF | H.(t) ||2= Nz Nr. Both the transmitter and receiver have the same spgedip =
10km/h. The carrier frequency is 1.8GHz, and the resultant maximum Doppler sliift.is- 33.3Hz.
The symbol period’; is specified via the produdt,.xIs, which determines the fading rate. The BER
target is10~3, the noise power per receive antentjais 1, and the other paramete’s;, Nz, Omax
fmaxIs, p are specified in the results.

Based on the above physical parameteys(t — t') is calculated via the exact expression in (8) for
all (¢, p)'s, and bothc?(q, p,n) ande?(q, p,n) are computed by (13), which determines the statistics
of ﬁ(n) andE(n). The statistics-based design follows the procedure in Section 1V, where the power-
shaping matrix and transmission rates are optimized Wittrealizations oﬁ(n). For the design with

CSIT, the precoder and rates are optimized for each realizatiﬁ(m)‘.

B. Instantaneous and Average Rates

The results of instantaneous rdtg(n) for the statistics-based design are shown in Fig.5, whete

30dB, fmaxls = 1072, andfmax = 0.5. The "MIMO, A,(n)” and "MIMO, A,(n, N7)" represent the
performance with\,(n) in (23) andA,(n, Nr) in (19), respectively. It is obvious th#t,(n) decays as

the time indexn increases in each case. This can be understood from (13), which indicates that larger
n impairs the powérof estimated channel coefficiett(q, p, n) while boosts that of estimation error
€%(q,p,n) due to the vanishing temporal correlatiop,(n7;). Accordingly, the SINR of each data
stream in (20) and hend®,(n) diminish as time progresses. The corresponding averagel raté/p,)

is plotted in Fig.6. ASV, increasesAR(Np) in each case goes up before reaching the peak and then

Swhich is the variance of the estimable part and represents the estimation quality.
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gradually decreases. This is because smallerreduces the portion of data transmission time in each
packet and hence degrades transmission efficiency, while lAfgeaxtends data transmission time at
the cost of lowerR,(n) in the extended period, which eventually brings dodli(Np).

Next, we study the impact of number of data streams on the MIMO performance, which is best
revealed by the comparison Af,(n, Nr) andA,(n). The former distributes power over &l transmit
angles, while the latter allocates power only to khé:) strongest angles. In each case, the number of
excited data streams is equal to the rank of the power-shaping matrix. Comparéd (mihA,(n, N7)
induces &5% to 100% reduction ofR,(n) in Fig.5 and &4% to 71% reduction ofAR(Np) in Fig.6.

The ranks of both power-shaping matrices are plotted in Fig.7, which showA jhatNr) has a fixed

rank of 11, while the rank ofA,(n) ranges betweet and8. Therefore, activating alll data streams

with less rate per stream is inferior to concentrating power on fewer streams with more power and rate
in each.

The performance of non-MIMO configurations is investigated next. The instantaneous, (ate
for MISO and SISO is plotted in Fig.5, where MISO achieves improvement over SISO due to the array
gain. However, the improvement is not significant, since multiplexing doesn’t exploit transmit diversity,
which can be achieved via space-time codes [30, 31]. Compared with MISO and SISO, SIMO achieves
significant improvement in bott®,(n) and AR(Np). This is because SIMO captures more channel
power by theNg receive antennas, and the received SNR is stabilized by the antenna diversity. In
addition, SIMO has a lower training cost than MIMO due to the use of single transmit antenna. Both
antenna diversity and low training cost make the maximdiR(N,) of SIMO roughly match that
of MIMO with A,(n, N7) in Fig.6. In fact, MIMO with A,(n, N7) and SIMO correspond to the
full-multiplexing and full-diversity schemes, respectively, while MIMO witl(n) makes a judicious
diversity-multiplexing tradeoff by choosing the optimum number of data streams. As demonstrated in
Fig.5 and 6, the tradeoff brings significant improvement over SIMO and MIMO Wittn, N7).

Finally, it would be instructive to compare the statistics-based design to that with CSIT, whose

performance is represented by "MIMO, CSIT”. It can be observed in Fig.5 that MIMO with CSIT
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on average achieves3a’% improvement inR,(n) over MIMO with A,(n), and the improvement in
AR(Np) is on averag@4% as shown in Fig.6. These results indicate that the loss may be acceptable if

there is no instantaneous channel state feedback.

C. Optimum Data Block Length

As shown in Fig.6, the average rateR(Np) is maximized by an optimum data block lengiy,,
which is defined asV, in (25). It can be observed tha{, for MIMO with A,(n), SIMO, MISO,
and SISO is 22, 6, 6, and 2, respectively. This decreasing order can be intuitively explained via the
virtual path partitioning in Fig. 2. In case of MIMO, the paths are partitioned by both the transmit and
receive beams and, therefore, each virtual channel coefficient in beamspace captures fewer paths with
smaller Doppler spread, compared to those in SIMO, MISO, and SISO’caBes smaller Doppler
spread results in slower decay of temporal correlation in virtual domain, which yields better channel
prediction and hence longé¥,, as implied by (13). In short, MIMO has finer resolution in beamspace,
which effectively slows down the temporal channel variation. For the same reasaw, tbheSIMO or
MISO is longer than that for SISO due to the finer path partitioning. The idea of reducing the temporal
channel variation by beamforming has been reported in [32, 33]. In this work, the benefit of the slowed
variation is accomplished by extending the data block length, which improves the rate by reducing the
training update frequency.

TheN, is also affected by the number of antennas. Fig.8 shows the average rate when the maximum
number of antennas at one side is 7 for MIMO, SIMO, and MISO. Mdor MIMO, SIMO, MISO,
and SISO is found to be 15, 6, 5, and 2, respectively. Compared with Fig.6, the smaller antenna number
decreases the average rate in each case and significantly réduimesMIMO. This is because fewer
antennas enlarge the size of each virtual angulathjnas well as the associated path Doppler spread,
which reduces the temporal correlation and helNge

The fading rate affect®V, as well. Fig.9 shows the average rate fag, I, = 10~. Compared

For instance, the paths By - are fewer than those ifir 2, S7,2 and those in the whol@z x 67 domain in Fig. 2.
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with Fig.6, the higher fading rate significantly redud€s whickf is 8, 3, and 1 for MIMO, SIMO,
and MISO, since the training signal has to be sent more frequently to track the channel variation. The

higher fading rate also impairs the average rate in each case due to the larger channel estimation error.

D. Accuracy of Virtual Channel Model

As described inA3 and A4 in Section 1V, the virtual channel coefficients are modeled as indepen-
dent Gaussian entries. To assess the modeling accuracy, the rate performance is rigorously simulated
based on the physical model (2), which does not impose any assumptions on the statistics of virtual
coefficients. The physical-model-based statistics are used to optimize the transceiver components in
the same way as described in Section IV. As shown in Fig.10, the good agreement between the perfor-
mances of the two verifies the accuracy of virtual channel model. In contrast to the physical model, the
virtual model provides insights into the system design: the capacity-optimum signaling corresponds to
transmitting independent streams from different virtual angles, and the optimum data block length is

determined by the temporal correlation in beamspace.

VIl. Conclusions

This work proposes a statistically adaptive spatial multiplexing scheme for correlated time-varying
MIMO channels based on the virtual channel representation. With the knowledge of channel statistics,
the transmitter adjusts the power and rate for each data stream in each symbol period, and the data
block length is further optimized to maximize the average rate. Major results for the performance of

instantaneous and average rates are summarized below.

e For each antenna configuration, the instantaneousigte) decreases for larger time index
while the average ratd R(Np) is usually a hill-shape function implying an optimuNy,;
e The rate-maximizing power-shaping matix(n) makes a judicious diversity-multiplexing trade-

off by exciting the optimum number of data streams, which significantly improves the rate;

8The average rate is always zero in case of SISO.
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e Compared with the statistics-based design, the design with CSIT on average im@sovgand
AR(Np) by 35% and 24%, respectively. Therefore, the former might be a good complexity-
performance tradeoff by avoiding the instantaneous feedback of CSIT, which will both reduce

the resource and suffer from the imperfections in practice;
Interesting results on the behavior of optimum data block leAgthre summarized below.

e N, increases according to the order SISJSIMO, MISO} < MIMO and increases for more
antennas in each case. This is because each virtual channel coefficient captures fewer paths
with smaller Doppler spread due to the finer path partitioning in beamspace. The smaller spread

effectively slows down the channel variation in beamspace and hence yields ager

e Higher fading rate factofmax!’s yields smallerN, and reduces botR,(n) andAR(Np);
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Fig. 2: lllustration of virtual path partitioningN,- = Ng=3).
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