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Abstract

This work presents a statistically adaptive spatial multiplexing scheme for time-varying correlated

MIMO channels. Unlike the conventional spatially uncorrelated block fading channel model, both chan-

nel variation in each data block and spatial correlation are accommodated in the design. The proposed

system continuously transmits packets with identical structure. Each packet consists of a training phase

followed by a data transmission phase. The training signal is used to predict instantaneous channel

state at the receiver. In each symbol period of data transmission phase, the transmitter simultaneously

transmits multiple data streams, which are decoded at the receiver based on the predicted channel state.

The transmitter is assumed to know only the channel statistics, with which the power and rate for each

data stream as well as the number of data streams are adjusted in each symbol period to achieve a target

bit error rate. The packet length is further optimized to maximize the spectral efficiency. The results

reveal that the rate-maximizing transmission strategy makes a judicious diversity-multiplexing tradeoff

by allocating power to an optimum number of data streams. Furthermore, the optimum packet length

decreases according to the order MIMO>{MISO, SIMO}>SISO and decreases for fewer antennas in

each case.

Index Terms– Multi-antenna systems, time-varying channels, adaptive modulation

I. Introduction

Multiple antennas at the transmitter and receiver have been shown to dramatically improve the capac-

ity and reliability of wireless communication links and are often referred to as multiple-input multiple-

output (MIMO) systems [1, 2]. However, design of communication strategies for time-varying channels

is challenging due to temporal channel variations that lead to outdated channel state information at both

ends. The impact of feedback delay on spatial multiplexing in time-varying MIMO channels has been

studied in [3, 4], which assume that error-free but delayed instantaneous channel information is avail-

able at the transmitter. The use of correction matrices at the receiver is suggested by [3] to partially

compensate the effect of delay, while [4] incorporates the channel uncertainty due to time variations in
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the precoder design. In the space-time coded adaptive modulation scheme [5], the transmitter optimizes

the symbol modulation levels in orthogonal space-time codes based on the feedback of instantaneous

received SNR, and the effect of feedback delay has been investigated. In [6], Alamouti coded data are

transmitted along two orthogonal basis beams with optimum power allocation and modulation levels. In

contrast to [3]-[5], the transmitter is assumed to only know the instantaneous estimated channel infor-

mation with feedback delay, which better matches the realistic situation. In [7], the proposed adaptive

transmit beamformer exploits the predicted channel information to mitigate the effect of feedback delay,

and the results show that a critical value of normalized prediction error is a good indicator of perfor-

mance degradation. Compared with the time-varying MIMO channels, the time-varying SISO channels

have been studied more extensively. Some representative work is described here. The pilot-based es-

timation of time-varying SISO channels and its impact on receiver performance have been studied in

[8, 9]. A closed-form lower bound of average channel capacity is derived in [10] in terms of channel

estimation error variance, and the optimal pilot symbol spacing and power allocation are determined by

maximizing this lower bound. The effects of feedback delay and error on the performance of adaptive

systems with instantaneous channel feedback have been investigated in [11, 12].

This work is motivated by the following two reasons. First, most existing research on time-varying

MIMO systems assumes a spatially uncorrelated block fading channel model, which ignores tempo-

ral channel variation in each data block as well as the spatial correlation. This will in general lead to

inaccurate performance predictions. Secondly, most existing work assumes that the transmitter knows

the instantaneous channel information, which can be either fed back from the receiver in FDD systems

[7] or estimated at the transmitter in TDD systems [3]. However, both methods will induce delay and

error in the channel information, which will inevitably degrade performance. In this work, a statisti-

cally adaptive spatial multiplexing scheme is proposed for narrowband time-varying correlated MIMO

channels and has the following features: (1) The design is based on the virtual channel representation

[15, 16], which jointly incorporates temporal channel variations and spatial correlation; (2) Instead of

instantaneous channel information, the transmitter is assumed to only know the channel statistics, which
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usually change at much slower time scales and can thus be tracked more easily and reliably; (3) Unlike

conventional adaptive modulation schemes whose power and rate for each data stream are invariant in

each data block, the proposed adaptive spatial multiplexing scheme adjusts the power and rate for each

data stream as well as the number of data streams in every symbol period based on the channel statistics,

and the data block length is further optimized to maximize the spectral efficiency. The results reveal

that the rate-maximizing transmission strategy makes a judicious diversity-multiplexing tradeoff by al-

locating power to an optimum number of data streams. Furthermore, the optimum data block length

decreases according to the order MIMO> {MISO, SIMO}> SISO and decreases for fewer antennas

in each case, since each virtual channel coefficient is contributed by more paths with larger Doppler

spread due to the coarser spatial resolution, and the larger spread reduces the channel coherence time in

virtual domain and hence the optimum data block length. The proposed statistics-based design is also

compared to that with perfect instantaneous Channel State Information at Transmitter (CSIT), which

on average improves the rate by 24%. Therefore, the former might be a good complexity-performance

tradeoff by avoiding the instantaneous feedback of CSIT, which will both reduce the resource and suffer

from the imperfections in practice.

The paper is organized as follows. Section II describes the virtual channel representation for time-

varying correlated MIMO channels. Section III provides an overview of the proposed scheme as well as

the design objective. The optimization of system components is elaborated in Section IV. For compar-

ison, the scheme with perfect instantaneous channel information at transmitter is described in Section

V. Numerical results including the performance comparison of both schemes are presented in Section

VI, and Section VII contains concluding remarks.

II. Signaling in Virtual Angle Domain

Consider a MIMO system with Uniform Linear Arrays (ULA) at both ends withNT transmit an-

tennas andNR receive antennas. For a narrowband time-varying MIMO channel, theNR×1 received
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signal vector at timet can be written as

yc(t) = Hc(t)xc(t) + nc(t), 0 ≤ t ≤ T (1)

wherexc(t) is theNT ×1 transmitted signal vector,nc(t) is the i.i.d. Gaussian noise vector, andT

presents the overall signaling duration. TheNR×NT channel matrix at timet is modeled as

Hc(t) =
L∑

l=1

βlaR(θR,l)a
H
T (θT,l)e

j2πνlt (2)

whereL is the number of paths. For thel-th path, the array steering and response vectors are given by

aT (θT,l) =
[
1, e−j2πθT,l , . . . , e−j2π(NT−1)θT,l

]T
, aR(θR,l) =

[
1, e−j2πθR,l , . . . , e−j2π(NR−1)θR,l

]T
(3)

where the parameterθ is related to the physical path angle1 φ asθ = dsinφ/λ with λ andd denoting

the wavelength and the antenna spacing, respectively. Without loss of generality (WLOG), we focus

on the critical spacingd = λ/2 in this paper and, hence,θ = sinφ/2 ∈ [−0.5, 0.5]. The impact of

antenna spacing on capacity and diversity performance has been investigated in [15]. The complex path

amplitudeβl = αle
jϕl has envelopeαl > 0 and phaseϕl uniformly distributed in[0, 2π]. WLOG, the

transmitter and receiver are assumed to move in the array-broadside directions at speeds ofvT andvR.

The resultant Doppler frequency shift of thel-th path is given byνl =(vRcosφR,l + vT cosφT,l) /λ with

the maximum shift asfmax = (vR + vT )/λ. Moreover,{αl}, {θR,l}, {θT,l}, {νl} are fixed for a given

scattering environment, while{ϕl} randomly change for different channel realizations [13, 14].

In contrast to (1), signaling can be realized in virtual angle domain (beamspace) instead of in spatial

domain. The signal relation in virtual angle domain can be written as

y(t) = H(t)x(t) + n(t) (4)

where the virtual channel matrixH(t) = AH
RHc(t)AT is the 2D Discrete Fourier Transform (DFT) of

Hc(t), and the transformed vectorsy(t) = AH
R yc(t), x(t) = AH

T xc(t), n(t) = AH
R nc(t) represent the

received, transmitted, and noise vectors in beamspace. TheNR×NR andNT×NT unitary DFT matrices

1measured w.r.t. the array broadside.
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are given byAR = [aR(θ̃R,1), . . . , aR(θ̃R,NR
)]/
√

NR andAT = [aT (θ̃T,1), . . . , aT (θ̃T,NT
)]/
√

NT with

the fixed receive and transmit virtual angles defined as

θ̃R,q =
q − ÑR

NR

, q = 1, . . . , NR, θ̃T,p =
p− ÑT

NT

, p = 1, . . . , NT (5)

where, WLOG, we assume the number of antennas is odd and defineÑR = (NR − 1)/2 + 1, ÑT =

(NT − 1)/2 + 1. The signaling in virtual angle domain is illustrated in Fig.1. Through DFT, thep-th

element ofx(t) is transmitted from thep-th transmit beam directed at̃θT,p, while theq-th element of

y(t) denotes the signal captured by theq-th receive beam at̃θR,q. As implied by (4), the virtual channel

coefficientH(q, p, t) in H(t) represents the channel coupling between thep-th transmitted element

xp(t) and theq-th received elementyq(t) in beamspace.

One important property of virtual channel coefficients is their approximately uncorrelated nature.

This can be interpreted via virtual path partitioning, which introduces the following subsets of paths

SR,q = {l : −1/(2NR) ≤ (θR,l − θ̃R,q) < 1/(2NR)}, q = 1, . . . , NR

ST,p = {l : −1/(2NT ) ≤ (θT,l − θ̃T,p) < 1/(2NT )}, p = 1, . . . , NT

(6)

corresponding to the spatial resolutions:∆θR = 1/NR and∆θT = 1/NT . The partitioning in case of

NR =NT =3 is illustrated in Fig.2, where each dot represents a path angular position(θR,l, θT,l) in the

2D domain[−0.5, 0.5]× [−0.5×0.5]. The 3 receive beams partition the paths into 3 rows{SR,q}3
q=1

with height1/3, and the 3 transmit beams partition the paths into 3 columns{ST,p}3
p=1 with width 1/3.

Based on the above partitioning, each virtual channel coefficient in (4) can be approximated as

H(q, p, t) =
1√

NRNT

L∑

l=1

βla
H
R (θ̃R,q)aR(θR,l)a

H
T (θT,l)aT (θ̃T,p)e

j2πνlt ≈
√

NRNT

∑

l∈Sq,p

βle
j2πνlt (7)

whereSq,p = SR,q ∩ ST,p represents the paths jointly captured by thep-th transmit beam and theq-th

receive beam, as illustrated in Fig.2. The mathematical reasoning of the approximation can be found in

[15]. It indicates that{H(q, p, t)} for different(q, p)’s are contributed by disjoint subsets of paths and,

hence, they are uncorrelated due to the independent path amplitudes. Based on the uncorrelated nature,

it has been shown that the capacity-achieving input covariance matrix in virtual domainE
[
x(t)xH(t)

]
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has a diagonal structure [20, 21]. This motivates the consideration of transmitting independent data

streams via different virtual angles in the proposed scheme.

Furthermore, the temporal correlation ofH(q, p, t) can be derived from (7) as

rq,p(t− t′) , E [H(q, p, t)H∗(q, p, t′)] =

∫
Gq,p(ν)ej2πν(t−t′)dν (8)

where the path Doppler power spectrum conditioned on(q, p) can be approximated as

Gq,p(ν) =
1

NRNT

L∑

l=1

α2
l

∣∣∣aH
R (θ̃R,q)aR(θR,l)

∣∣∣
2 ∣∣∣aH

T (θT,l)aT (θ̃T,p)
∣∣∣
2

δ(ν − νl)

≈ NRNT

∑

l∈Sq,p

α2
l δ(ν − νl).

(9)

The above approximation implies that the conditional Doppler power spectrum is contributed by the

paths inSq,p and hence has a smaller spread than that in SISO channel, which is contributed by all

paths. The smaller spread yields a slower decay of the corresponding temporal correlation and hence

slows down the effective channel variation. This explains why MIMO systems can reduce the training

update frequency, as reflected by the numerical results.

III. System Design Overview

The system continuously transmits and receives space-time packets with identical structure. WLOG,

the structure of the first packet is shown in Fig. 3. It has a training phase withNtr symbol periods fol-

lowed by a data transmission phase withND symbol periods. The fixed symbol period is denoted as

Ts, and the time 0 represents the end of training phase. The packet is transmitted and received in virtual

angle domain. WLOG, theNT transmit virtual angles are sorted in descending order according to their

statistical strengths2. In thep-th training symbol period, a training symbol is transmitted from the beam

at thep-th transmit virtual angle with full powerρ. This impliesNtr≤NT . Accordingly, the transmitted

training signal matrix isD=
√

ρINtr with INtr as the identity matrix. In then-th data symbol period, a

k(n)×1 signal vectorx(n) is launched from the firstk(n) transmit virtual beams.

2which meansE‖H(:, 1, t)‖2F ≥ , . . . , ≥ E‖H(:, NT , t)‖2F , whereH(:, p, t) represents thep-th column ofH(t) and

‖·‖2F denotes the Frobenius norm. It can be shown that the order is independent oft for a given scattering environment.
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The system block diagram in then-th data symbol period is illustrated in Fig.4. At the transmitter

side, the transmitted signal vector in virtual angle domain is formed asx(n) = Λ1/2(n)s(n), where

Λ(n) represents a diagonal power-shaping matrix. Thek(n)×1 data vectors(n) consists of independent

QAM symbols withE[s(n)sH(n)]=Ik(n), andRp(n) represents the number of bits in thep-th symbol.

Accordingly, the covariance matrix ofx(n) has a diagonal structure, which is capacity-achieving [20,

21]. The vectorx(n) is further zero-padded and DFT transformed to the spatial domain for antenna

transmission:xc(n)=AT [xT (n)
... 0T ]T , where0 is a(NT−k(n))×1 all-zero vector. Due to the DFT,

thek(n) data symbols inx(n) are respectively launched from the firstk(n) transmit virtual beams. At

the receiver side, the signal vector on theNR receive antennas is transformed to the beamspace through

y(n)=AH
R yc(n), wherey(n) consists of signals captured by theNR receive virtual beams. The vector

y(n) is then fed to a linear decoder to estimate the data vector:ŝ(n) = G(n)y(n). The decoder is

formed based on the predicted virtual channel matrixĤ(n), which is generated by feeding theNR×Ntr

signal matrixZ received in training phase to a linear channel predictorL(n).

The general design objective is to maximize the average rate per packet
∑ND

n=1

∑k(n)
p=1 Rp(n)/(Ntr+

ND) subject to the transmit power constraint and the BER requirement for each data stream. The

optimization is overL(n), G(n), Λ(n), {Rp(n)}, k(n), andND with channel statistics known at both

sides. The procedure is briefly described below.

At the receiver side:

Step 1 In each data symbol period,L(n) is formed by minimizing the Mean Square Error (MSE)

between the true channel state and its prediction. The MSE is averaged over channel statistics.

Therefore,L(n) is determined by channel statistics and hence is the same for different packets;

Step 2 The decoderG(n) is formed by minimizing the MSE betweens(n) andŝ(n), which is averaged

over s(n) and the noise. As shown later,G(n) is a function ofĤ(n) andΛ(n). Therefore, it

varies with different realizations of̂H(n) in different packets;

At the transmitter side:

Step 1 For a given number of data streamsk(n), Λ(n) is optimized by minimizing the MSE between
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s(n) andŝ(n), which is averaged over channel statistics, since the transmitter only knows channel

statistics. Next, the rate of thep-th streamRp(n) is chosen as the maximum number of bits keep-

ing the corresponding average BER under a target BER. BothΛ(n) and{Rp(n)} are optimized

over channel statistics and hence do not change across the packets;

Step 2 The k(n) is further optimized by maximizing the total rate in then-th data symbol period
∑k(n)

p=1 Rp(n), and the correspondingΛ(n) and{Rp(n)}k(n)
p=1 are selected as the final designs;

Step 3 The data block lengthND is optimized by maximizing the average rate per packet defined earlier

with the optimumk(n) and the corresponding{Rp(n)}k(n)
p=1 in the expression. For simplicity, the

length of training phaseNtr can be first fixed asNT , though the optimum value can be smaller as

described later;

The proposed statistics-based design has the following two features. (1) It has low complexity

compared with the CSIT-based design [3]-[7]: instantaneous channel feedback is not required, and the

same optimized packet structure is applied over the period when the channel statistics are static; (2) The

temporal and spatial channel correlations are exploited by optimizing the packet length and the number

of data streams, which significantly improves the average rate, as shown in the results;

IV. Optimization of System Components

WLOG, we focus on the first packet and list major design assumptions as follows.

• A1) For simplicity, H(t) in the training phase is assumed to be the same as that at time 0.

However, extension to the case considering channel variation in the training phase is feasible;

• A2) Virtual channel matrixH(t) in then-th data symbol period in Fig. 3 is assumed to be the

same asH(nTs), which is denoted asH(n) hereafter;

• A3) H(q, p, t) has zero-mean Gaussian distribution. It can be seen from (7) thatH(q, p, t) is

a weighted sum of independent path amplitudes. According to the central limit theorem, the

distribution would be approximately Gaussian if the number of paths is large;

• A4) {H(q, p, t)} are independent for different(q, p)’s: E[H(q, p, t)H∗(q′, p′, t′)] = rq,p(t −
t′) δq−q′δp−p′ with rq,p(t− t′) specified in (8). This assumption stems from (7);
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• A5) Both receiver and transmitter know the temporal channel correlations
{
rq,p(nTs), n = 1, . . . ,

Nmax

}
for all (q, p)’s, whereNmax denotes an upper bound of the data block lengthND. Those

temporal correlations represent the channel statistics needed in the design;

• A6) To get a tractable BER expression, the interference plus noise seen by each data stream at

the linear decoder output is assumed to be Gaussian. This assumption is justified in [23] and has

been widely applied in linear transceiver designs [26];

• A7) The number of data streamsk(n) has an upper bound of min{NR, NT}, which is the maxi-

mum rank ofH(n);

A. Optimization of Channel Predictor

For simplicity, the length of training phase is first assumed to beNtr = NT . With A1, theNR×NT

received training matrix in virtual angle domain can be written asZ=H(0)D+W, whereD=
√

ρINT

and theNR×NT noise matrixW has i.i.d. complex Gaussian entries with zero mean and varianceσ2
n.

The predicted virtual channel matrix in then-th data symbol period is given by

Ĥ(n)=vec(ĥ(n)), ĥ(n)=L(n)z, z=vec(Z)=
(
DT ⊗ INR

)
h(0) + w=

√
ρh(0) + w (10)

whereL(n) is theNRNT ×NRNT linear channel predictor,z = vec(Z), h(0) = vec(H(0)), andw =

vec(W) are obtained by stacking3 the columns ofZ, H(0), andW, respectively,vec(·) represents the

inverse operation of vec(·), andz is specified via the identity vec(ABC)=
(
CT ⊗A

)
vec(B) with ⊗

denoting the Kronecker product. The MMSE channel predictor can be derived from the orthogonality

principle [18] as

Lo(n) = arg min
L(n)

E ‖L(n)z − h(n)‖ 2
F

= E
[
h(n)zH

] (
E

[
zzH

])−1
=
√

ρΩ(n)
(
ρΩ(0) + σ2

nINRNT

)−1

(11)

whereh(n) = vec(H(n)) with H(n) given in A2, and the expectation is over bothh andw. Ac-

cording toA4, Ω(n) = E
[
h(n)hH(0)

]
has a diagonal structure and, hence,Lo(n) is diagonal as

3Mathematically,z=vec(Z)=[zT
1 , . . . , zT

NT
]T with zp as thep-th column ofZ, andvec(z)=Z.
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well. It can be shown that the((p − 1)NR + q)-th elements of̂h(n) andz correspond toĤ(q, p, n)

andZ(q, p), respectively, and the((p − 1)NR + q)-th diagonal element ofLo(n) can be specified as

rq,p(nTs)
√

ρ/ (rq,p(0)ρ + σ2
n). The above relations together witĥh(n) = Lo(n)z give the expressions

of Ĥ(q, p, n) and the associated prediction error as

Ĥ(q, p, n) =
rq,p(nTs)

√
ρ

rq,p(0)ρ + σ2
n

Z(q, p) =
rq,p(nTs)

√
ρ

rq,p(0)ρ + σ2
n

(H(q, p, 0)
√

ρ + W (q, p))

E(q, p, n) = H(q, p, n)− Ĥ(q, p, n)

(12)

and, according toA3, both have zero-mean complex Gaussian distribution

Ĥ(q, p, n) ∼ CN
(
0, σ̂2(q, p, n)

)
, σ̂2(q, p, n) = |rq,p(nTs)|2ρ/

(
rq,p(0)ρ + σ2

n

)

E(q, p, n) ∼ CN
(
0, ε2(q, p, n)

)
, ε2(q, p, n) = rq,p(0)− σ̂2(q, p, n).

(13)

The matrix version of (12) is given byH(n) = Ĥ(n) + E(n) with Ĥ(n) known at the receiver. Based

onA4 and (12), we have the following properties

E
[
Ĥ(q, p, n)Ĥ∗(q′, p′, n)

]
= σ̂2(q, p, n)δqq′δpp′

E [E(q, p, n)E∗(q′, p′, n)] = ε2(q, p, n)δqq′δpp′ , E
[
E(q, p, n)Ĥ∗(q′, p′, n)

]
= 0

(14)

which indicate that̂H(n) andE(n) have independent entries, and they are also mutually independent.

The channel estimation for correlated MIMO channels has been studied in [19], which shows that the

optimum training signal corresponds to transmitting beams in successive symbol intervals along differ-

ent transmit angles as assumed in Fig.3. The proposed scheme also considers the channel variation in

each data block, and the channel in then-th symbol period is predicted by the predictor in (11).

B. Optimization of Decoder and Power-Shaping Matrix

As described in Section III, the transmitted signal vector in virtual angle domainx(n) =Λ1/2(n)s(n)

has dimensionk(n), which is simplified ask in the following. The correspondingNR×1 received signal

vector in virtual domain can be written as

y(n) = Hk(n)x(n) + n(n) = Ĥk(n)x(n) + v(n) (15)
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where the matrix with subscriptk contains the firstk columns of the original matrix,n(n) has i.i.d.

complex Gaussian noise entries with zero mean and varianceσ2
n, the virtual channel matrix is decom-

posed asHk(n)= Ĥk(n)+Ek(n), andv(n)=Ek(n)x(n)+n(n) represents the effective noise vector.

The MMSE decoder can be derived as

Go(n) = arg min
G(n)

E ‖G(n)y(n)− s(n)‖ 2
F = E

[
s(n)yH(n)

] (
E

[
y(n)yH(n)

])−1

= Λ1/2(n)ĤH
k (n)

(
Ĥk(n)Λ(n)ĤH

k (n) + ∆(n)
)−1

(16)

where the expectation is overEk(n), s(n), n(n), and the effective noise covariance matrix is given by

∆(n) = E
[
v(n)vH(n)

]
= E

[
Ek(n)Λ(n)EH

k (n)
]
+ σ2

nINR

= diag(tr (Σ1(n)Λ(n)) , . . . , tr (ΣNR
(n)Λ(n))) + σ2

nINR

(17)

whereΣq(n)=E
[
EH

k (q, :, n)Ek(q, :, n)
]
=diag(ε2(q, 1, n), . . . , ε2(q, k, n)) with Ek(q, :, n) as theq-th

row of Ek(n) andε2(q, p, n) given in (13). The MSE for the optimization ofΛ(n) is defined as

MSE(n) = E tr
[(

Go(n)y(n)− s(n)
)(

Go(n)y(n)− s(n)
)H

]

= E tr
(
Ik + Λ1/2(n)ĤH

k (n)∆−1(n)Ĥk(n)Λ1/2(n)
)−1

(18)

≤ E tr
(
Ik + Λ1/2(n)ĤH

k (n)∆̄−1(n)Ĥk(n)Λ1/2(n)
)−1

, MSE(n)

∆̄(n) = tr (Λ(n)) diag
(
ε2(1, n), . . . , ε2(NR, n)

)
+ σ2

nINR
, ε2(q, n) = max

p=1,...,k
ε2(q, p, n)

where the readers can refer to [25, 26] for the 2nd step, the inequality stems from∆̄(n) ≥∆(n) as

well as the properties of matrix ordering [22], and the expectation is overs(n), n(n), Ek(n), and

Ĥk(n), since the transmitter only knows channel statistics. The optimumΛ(n) is aimed at minimizing

MSE(n). However, the optimization may not be convex due to the term tr(Σq(n)Λ(n)) in (17) and

the inverse on∆(n) in (18). Therefore,Λ(n) is optimized by minimizing the upper bound ofMSE(n)

Λo(n, k) = arg min
Λ(n)

MSE(n), s.t. tr(Λ(n)) = ρ (19)

where the variablek emphasizes that the solution is conditioned onk. It can be shown with the tech-

niques in [20] that (19) is convex programming and, therefore, the global minimizer can be reliably

obtained via optimization routines.
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C. Optimization of Transmission Rates

With the power-shaping matrix, we next optimize the transmission rates of thek streams. The SINR

corresponding to thep-th received stream of̂s(n)=Go(n)y(n) can be straightforwardly shown as

γp(n) = λp(n)ĤH
k (:, p, n)

(∑

j 6=p

λj(n)Ĥk(:, j, n)ĤH
k (:, j, n) + ∆(n)

)−1

Ĥk(:, p, n) (20)

whereĤk(:, p, n) represents thep-th column ofĤk(n), andλp(n) denotes thep-th diagonal element of

Λo(n, k). With A6, a tight BER approximation for QAM constellation with2i points is given by [27]:

BER(i, γp(n)) = 0.2 exp (−1.5γp(n)/(2i − 1)). Since the transmitter only knows channel statistics,

the rate of thep-th stream in then-th data symbol period is defined as the maximum number of bits

keeping the average BER under the target BER

Rp(n, k) = max
i∈{0,1,2,... }

i, s.t. BERp(n) = E [BER(i, γp(n))] ≤ BERtar (21)

where the expectation is over̂Hk(n), and the variablek emphasizes that the solution is conditioned on

k. Deriving a closed-form expression ofRp(n, k) is difficult, since the distribution ofγp(n) for arbi-

trary channel statistics is unknown. The asymptotic distribution for i.i.d.Ĥk(n) with large number of

antennas can be found in [28], and the distribution for i.i.d.Ĥk(n) with arbitrary number of antennas is

given in [29] but is complicated for numerical evaluation. Therefore,Rp(n, k) is numerically searched

for general MIMO channels. However, closed-form solutions can be obtained for SISO, MISO, and

SIMO channels with arbitrary correlations. They are ignored due to the space limitation.

D. Optimization of Data Stream Number and Data Block Length

The number of data streamsk can be optimized to maximize the total rate in then-th data symbol period

ko(n) = arg max
k∈S1

k∑
p=1

Rp(n, k), S1 = {1, . . . , min{NT , NR}} (22)

where min{NT , NR} represents the upper bound ofk, as described inA7. The optimized power shaping

matrix and transmission rates associated withko(n) are selected as the final designs

Λo(n) = Λo(n, ko(n)), Ro(n) =
[
R1(n, ko(n)), . . . , Rko(n)(n, ko(n))

]T
. (23)
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To assess the performance, we define the average rate per packet as

AR(ND) =

∑ND

n=1 Ro(n)

ND + Ntr

, Ro(n) =

ko(n)∑
p=1

Rp(n, ko(n)), Ntr = max
n∈{1,...,ND}

ko(n) (24)

whereRo(n) denotes the instantaneous total rate in then-th data symbol period, and the number of

training symbol periodsNtr is equal to the number of transmit angles involved in the data transmission.

Note thatNtr could be less thanNT initially assumed in Section IV-A, since the data transmission may

not use allNT angles. The optimum data block length is the one maximizing the average rate

No = arg max
ND∈S2

AR(ND), S2 = {1, . . . , Nmax} (25)

whereNmax represents the maximum length for searchingNo and can be predetermined by simulating

typical channels in practice.

V. Adaptation with Instantaneous Feedback

The statistics-based design in Section III only requires channel statistics at the transmitter. However,

most existing work [3]-[7] assumes the availability of Channel State Information at Transmitter (CSIT).

It would be instructive to compare the statistics-based design to the design with CSIT. In the latter case,

the transmitter is assumed to know the received training signal matrixZ, which is perfectly fed back

from the receiver without delay and error. Therefore, the transmitter can know the predicted virtual

channel matrix̂H(n) via (10).

The transceiver with CSIT has the same structure as Fig.4 except that the power-shaping matrix

and the zero-padding block are replaced by a linear precoder. The optimization is also the same as the

statistics-based design except that the precoder and rates are optimized for each realization ofĤ(n).

For a fixed number of data streamsk, theNR×1 received signal vector can be written as

y(n) = H(n)F(n)s(n) + n(n) = Ĥ(n)F(n)s(n) + v(n) (26)

whereF(n) is theNT×k precoder, andv(n)=E(n)F(n)s(n) + n(n). Eqn (26) will reduce to (15) if
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F(n)=[Λ1/2(n)
... 0k×(NT−k)]

T . The precoder is aimed at minimizing the following MSE

MSE
(
Ĥ(n)

)
= tr

(
Ik + FH(n)ĤH(n)∆−1(n)Ĥ(n)F(n)

)−1

≤ tr
(
Ik + FH(n)ĤH(n)∆̄−1(n)Ĥ(n)F(n)

)−1
(27)

which is derived in the same way as (18) except that the expectation is not onĤ(n), since the transmitter

now knowsĤ(n). Let VΨVH be the eigen-decomposition of̂HH(n)∆̄−1(n)Ĥ(n). The upper bound

of MSE
(
Ĥ(n)

)
can be minimized by choosingF(n)=V[Φ1/2 ...0k×(NT−k)]

T with the optimum power-

shaping matrixΦ=diag(φ1, . . . , φk) specified in [25]. Furthermore, the SINR of thep-th stream at the

MMSE decoder output can be straightforwardly shown as

γp(n) = FH(:, p, n)ĤH(n)

(∑

j 6=p

Ĥ(n)F(:, j, n)FH(:, j, n)ĤH(n) + ∆(n)

)−1

Ĥ(n)F(:, p, n) (28)

whereF(:, p, n) denotes thep-th column ofF(n). The maximum rate of thep-th stream under the BER

requirement4 is given byRp(n, k)=blog2 (1− 1.5γp(n)/ln(BERtar/0.2))c, and the optimum number

of data streams is searched according toko(n) = arg max
k∈S1

∑k
p=1 Rp(n, k). In contrast to the statistics-

based design,F(n), {Rp(n, k)}, andko(n) are optimized for a given̂H(n) instead of its statistics. The

corresponding average rate can be expressed as

AR(ND)=

∑ND

n=1 Ro(n)

ND + Ntr

, Ro(n)=E




ko(n)∑
p=1

Rp(n, ko(n))


 (29)

where the expectation is on̂H(n), and the training block lengthNtr is equal to the number of non-

vanishing transmit virtual angles5. This is because unlike the statistics-based design, the precoder and

rates are optimized for each estimatedH(n). To estimateH(n), the pilot symbols have to be sent from

all non-vanishing transmit virtual angles.

4Mathematically,Rp(n, k)=max
i∈Z

i, s.t.BER(i, γp(n))≤BERtar with BER(i, γp(n)) defined above (21).
5which equals the number of columns ofH(n) whose Frobenious norms averaged over channel statistics are not zero.
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VI. Results and Discussions

A. Simulation Parameters and Procedure

We considerL = 100 paths whose arrival and departure angles{θR,l, θT,l} are randomly uniformly

distributed within a 2D angular region in the virtual domain:[−θmax, θmax] × [−θmax, θmax], whereθmax

determines the angular spread. Each path has the same strengthα2
l = 1/L, which implies the channel

normalizationE ‖Hc(t)‖2
F=NRNT . Both the transmitter and receiver have the same speedvT = vR =

10km/h. The carrier frequency is 1.8GHz, and the resultant maximum Doppler shift isfmax=33.3Hz.

The symbol periodTs is specified via the productfmaxTs, which determines the fading rate. The BER

target is10−3, the noise power per receive antennaσ2
n is 1, and the other parametersNR, NT , θmax,

fmaxTs, ρ are specified in the results.

Based on the above physical parameters,rq,p(t− t′) is calculated via the exact expression in (8) for

all (q, p)’s, and bothσ̂2(q, p, n) andε2(q, p, n) are computed by (13), which determines the statistics

of Ĥ(n) andE(n). The statistics-based design follows the procedure in Section IV, where the power-

shaping matrix and transmission rates are optimized with103 realizations of̂H(n). For the design with

CSIT, the precoder and rates are optimized for each realization ofĤ(n).

B. Instantaneous and Average Rates

The results of instantaneous rateRo(n) for the statistics-based design are shown in Fig.5, whereρ =

30dB, fmaxTs = 10−2, andθmax = 0.5. The ”MIMO, Λo(n)” and ”MIMO, Λo(n, NT )” represent the

performance withΛo(n) in (23) andΛo(n,NT ) in (19), respectively. It is obvious thatRo(n) decays as

the time indexn increases in each case. This can be understood from (13), which indicates that larger

n impairs the power6 of estimated channel coefficientσ̂2(q, p, n) while boosts that of estimation error

ε2(q, p, n) due to the vanishing temporal correlationrq,p(nTs). Accordingly, the SINR of each data

stream in (20) and henceRo(n) diminish as time progresses. The corresponding average rateAR(ND)

is plotted in Fig.6. AsND increases,AR(ND) in each case goes up before reaching the peak and then

6which is the variance of the estimable part and represents the estimation quality.
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gradually decreases. This is because smallerND reduces the portion of data transmission time in each

packet and hence degrades transmission efficiency, while largerND extends data transmission time at

the cost of lowerRo(n) in the extended period, which eventually brings downAR(ND).

Next, we study the impact of number of data streams on the MIMO performance, which is best

revealed by the comparison ofΛo(n,NT ) andΛo(n). The former distributes power over allNT transmit

angles, while the latter allocates power only to theko(n) strongest angles. In each case, the number of

excited data streams is equal to the rank of the power-shaping matrix. Compared withΛo(n), Λo(n,NT )

induces a55% to 100% reduction ofRo(n) in Fig.5 and a64% to 71% reduction ofAR(ND) in Fig.6.

The ranks of both power-shaping matrices are plotted in Fig.7, which shows thatΛo(n,NT ) has a fixed

rank of11, while the rank ofΛo(n) ranges between4 and8. Therefore, activating all11 data streams

with less rate per stream is inferior to concentrating power on fewer streams with more power and rate

in each.

The performance of non-MIMO configurations is investigated next. The instantaneous rateRo(n)

for MISO and SISO is plotted in Fig.5, where MISO achieves improvement over SISO due to the array

gain. However, the improvement is not significant, since multiplexing doesn’t exploit transmit diversity,

which can be achieved via space-time codes [30, 31]. Compared with MISO and SISO, SIMO achieves

significant improvement in bothRo(n) andAR(ND). This is because SIMO captures more channel

power by theNR receive antennas, and the received SNR is stabilized by the antenna diversity. In

addition, SIMO has a lower training cost than MIMO due to the use of single transmit antenna. Both

antenna diversity and low training cost make the maximumAR(ND) of SIMO roughly match that

of MIMO with Λo(n,NT ) in Fig.6. In fact, MIMO with Λo(n,NT ) and SIMO correspond to the

full-multiplexing and full-diversity schemes, respectively, while MIMO withΛo(n) makes a judicious

diversity-multiplexing tradeoff by choosing the optimum number of data streams. As demonstrated in

Fig.5 and 6, the tradeoff brings significant improvement over SIMO and MIMO withΛo(n,NT ).

Finally, it would be instructive to compare the statistics-based design to that with CSIT, whose

performance is represented by ”MIMO, CSIT”. It can be observed in Fig.5 that MIMO with CSIT
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on average achieves a35% improvement inRo(n) over MIMO with Λo(n), and the improvement in

AR(ND) is on average24% as shown in Fig.6. These results indicate that the loss may be acceptable if

there is no instantaneous channel state feedback.

C. Optimum Data Block Length

As shown in Fig.6, the average rateAR(ND) is maximized by an optimum data block lengthND,

which is defined asNo in (25). It can be observed thatNo for MIMO with Λo(n), SIMO, MISO,

and SISO is 22, 6, 6, and 2, respectively. This decreasing order can be intuitively explained via the

virtual path partitioning in Fig. 2. In case of MIMO, the paths are partitioned by both the transmit and

receive beams and, therefore, each virtual channel coefficient in beamspace captures fewer paths with

smaller Doppler spread, compared to those in SIMO, MISO, and SISO cases7. The smaller Doppler

spread results in slower decay of temporal correlation in virtual domain, which yields better channel

prediction and hence longerNo, as implied by (13). In short, MIMO has finer resolution in beamspace,

which effectively slows down the temporal channel variation. For the same reason, theNo for SIMO or

MISO is longer than that for SISO due to the finer path partitioning. The idea of reducing the temporal

channel variation by beamforming has been reported in [32, 33]. In this work, the benefit of the slowed

variation is accomplished by extending the data block length, which improves the rate by reducing the

training update frequency.

TheNo is also affected by the number of antennas. Fig.8 shows the average rate when the maximum

number of antennas at one side is 7 for MIMO, SIMO, and MISO. TheNo for MIMO, SIMO, MISO,

and SISO is found to be 15, 6, 5, and 2, respectively. Compared with Fig.6, the smaller antenna number

decreases the average rate in each case and significantly reducesNo for MIMO. This is because fewer

antennas enlarge the size of each virtual angular binSq,p as well as the associated path Doppler spread,

which reduces the temporal correlation and henceNo.

The fading rate affectsNo as well. Fig.9 shows the average rate forfmaxTs = 10−1. Compared

7For instance, the paths inS2,2 are fewer than those inSR,2, ST,2 and those in the wholeθR×θT domain in Fig. 2.
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with Fig.6, the higher fading rate significantly reducesNo, which8 is 8, 3, and 1 for MIMO, SIMO,

and MISO, since the training signal has to be sent more frequently to track the channel variation. The

higher fading rate also impairs the average rate in each case due to the larger channel estimation error.

D. Accuracy of Virtual Channel Model

As described inA3 andA4 in Section IV, the virtual channel coefficients are modeled as indepen-

dent Gaussian entries. To assess the modeling accuracy, the rate performance is rigorously simulated

based on the physical model (2), which does not impose any assumptions on the statistics of virtual

coefficients. The physical-model-based statistics are used to optimize the transceiver components in

the same way as described in Section IV. As shown in Fig.10, the good agreement between the perfor-

mances of the two verifies the accuracy of virtual channel model. In contrast to the physical model, the

virtual model provides insights into the system design: the capacity-optimum signaling corresponds to

transmitting independent streams from different virtual angles, and the optimum data block length is

determined by the temporal correlation in beamspace.

VII. Conclusions

This work proposes a statistically adaptive spatial multiplexing scheme for correlated time-varying

MIMO channels based on the virtual channel representation. With the knowledge of channel statistics,

the transmitter adjusts the power and rate for each data stream in each symbol period, and the data

block length is further optimized to maximize the average rate. Major results for the performance of

instantaneous and average rates are summarized below.

• For each antenna configuration, the instantaneous rateRo(n) decreases for larger time indexn,

while the average rateAR(ND) is usually a hill-shape function implying an optimumND;

• The rate-maximizing power-shaping matrixΛo(n) makes a judicious diversity-multiplexing trade-

off by exciting the optimum number of data streams, which significantly improves the rate;

8The average rate is always zero in case of SISO.

18



• Compared with the statistics-based design, the design with CSIT on average improvesRo(n) and

AR(ND) by 35% and 24%, respectively. Therefore, the former might be a good complexity-

performance tradeoff by avoiding the instantaneous feedback of CSIT, which will both reduce

the resource and suffer from the imperfections in practice;

Interesting results on the behavior of optimum data block lengthNo are summarized below.

• No increases according to the order SISO< {SIMO, MISO} < MIMO and increases for more

antennas in each case. This is because each virtual channel coefficient captures fewer paths

with smaller Doppler spread due to the finer path partitioning in beamspace. The smaller spread

effectively slows down the channel variation in beamspace and hence yields a longerNo;

• Higher fading rate factorfmaxTs yields smallerNo and reduces bothRo(n) andAR(ND);
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Fig. 2: Illustration of virtual path partitioning(NT =NR =3).

Fig. 3: Format of transmitted signal in the first packet.
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Fig. 10: Average rate comparison for virtual and physical models, angular spreadθmax = 0.5, transmit

SNRρ = 30dB, fading rate factorfmaxTs = 10−2.
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