IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 4, APRIL 1997 1067

IV. DiscuUsSION AND CONCLUSIONS On the Equivalence of the Operator and Kernel
The GC estimate has been shown to be invariant with respect to th¥€thods for Joint Distributions of Arbitrary Variables
statistical behavior of,, provided thates, - - -, zs have stationary

Gaussian distributions and are statistically independent; ofThis Akbar M. Sayeed

invariance extends the utility of the GC estimate from passive to

active dett_actlon scen.arlos. An exr?lmple sn_nulatnng a three'Channe/&bstract—Generalizing the concept of time-frequency representations,
matched filter scenario was described. This example demonstraggfhen has recently proposed a method, based on operator correspondence
that a GC-based multiple-channel matched filter can, at least in sorales, for generating joint distributions of arbitrary variables. As an
cases, provide better detection performance than is obtained us_ﬁhgrnatlve to considering all such rules, which is a practical impossibility

multiple individual two-channel MSC-based detectors.

in general, Cohen has proposed the kernel method in which different
distributions are generated from a fixed rule via an arbitrary kernel. In

Other applications, in the area of CyC|°Stati0r_‘a_-ry signal detectighls correspondence, we derive a simple but rather stringent necessary
as suggested by [8], for example, appear promising but need furtbefdition, on the underlying operators, for the kernel method (with the
investigation. kernel functionally independent of the variables) to generateall bilinear

distributions. Of the specific pairs of variables that have been studied,
essentially only time and frequency satisfy the condition; in particular,
the important variables of time and scale do not. The results warrant
further study for a systematic characterization of bilinear distributions
in Cohen’s method.
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joint distributions are generated via an arbitrary kernel. In [17], @here ¢ is the weighting kernél.The corresponding joint distribu-

simple counterexample is constructed to show that the kernel methimhs (¢) can then be recovered by using (5) in (3). In the case

does not generate all the correspondence rules for the variablebfime-frequency, fixingd/, to be the Weyl correspondence yields

time and scale. the following commonly used characterization of Cohen’s class of
In this correspondence, we show that for two variables, say, TFR'’s first proposed in [13]

andb, the corresponding Hermitian operatodsand 5 must satisfy

rather stringent conditions, such as (C(®)s)(t, f) = ///@5(977)5(’” +7/2)
oA BB _ EJJI(O’}E)GjBBﬁjQA’fOr all (a, 3) € R?. -8 (u — 7/2)0'727r9("_t)(3_'72"T‘f du df dr. (6)
and for somef: R* — R (1)

IIl. N ECESSARY CONDITIONS FOR THE

. - VALIDITY OF THE KERNEL METHOD
for the kernel methodto generate the entire class of bilinear

distributions determined by the operator method. We also generalizé‘ccording to Cohen's kernel method, any two characteristic func-
the result to an arbitrary number of variables and argue that of tHens, say, M an?%)?, corre;sggydmg to two different operator
specific variables considered in the literature, only time and frequerfe§frespondenced ;™" and M, must be related by
(and those unitarily equivalent to time and frequency) satisfy the o . (B) . N i )
conditions. We begin with a brief description of Cohen’s method. (Mys)(a, 3) =(M;""s, 5) - oo B)(Mzs)(a, )

oo, YM P s 5),  forall s € L*(R)

@)

We describe the method for two variables; extension to mofer some¢ : R?> — C. It follows that a necessary and sufficient
variables will be obvious. We assume that all signals of interesondition for the kernel method to hold is thahy two operator

Il. COHEN'S METHOD

belong toL?(R), which is the space of finite energy signals. correspondences must be related by
The characteristic functiod! of a jointa-b distribution P of signal (aB) _ (o)
s is defined as [1] M"Y = o(a, B) M (8)

- , ) for some¢. In particular, the above relationship must hold in the
(Ms)(a, 8) = // (Ps)(a,b)e’>™ "> qq db (2) case when botd{** andM{** are unitary operatorin which
case, it can be easily verified tht(«, 3)| = 1 for all («, 3). For

and the distribution can be recovered frodfi as example, all characteristic function operators of the following form

are unitary
(Ps)(a,b) = //(Ms)(a,ﬂ)e*ﬂme*ﬂ"ﬁb da dB.  (3) M©D = T +%  where 9)
k
L - . . . if Cr. =
The key observation is that the characteristic function can be directly Ck=AorB, ~.= {/(;k if Ck‘ _ gl, and
computed from the signal by using a characteristic function operator - k
M{=:b<t2) corresponding to the function>™**¢/2"7" | as ak=a, > fk=0 (10)
k k
(Ms)(a, ) = (M5, 5) Two specific cases are the correspondences
= /(M((}‘H)S)(l')s*(:lf) de. (4) Mga,ﬂ) — 6;’2«@,46]'27183 andﬂllga,ﬁ) — ejZW,Bgej»zwaA

Since the operatorst and B do not commute in general. there areWhich result in the relationship (1). Extension to more than two
T P i .  on »29% ' variables immediately follows, and we have the following general
infinitely many ways in which the functiog/=*“ ¢’ can be asso-

. . . X s result.
ciated with an operator; three prominent exampleseat&(>-+75)

; D ; ; . Proposition: Let A, As,---, Ay be the Hermitian operators
2raA_j27 BB j2m BB j2raA g g )
(Weyl correspondencge), N » ande N ’Wh'Ch.W? .. corresponding to thé/ variablesa, az, - - -, ax in Cohen’s method.
will use throughout this correspondence. The corresponding infinit Yien. a necessary condition for the kernel method to genelhte
many joint distributions can then be recovered via (3), and tiediyne biIine,ar joint distributions oft . as, - - -, ax is that forany two uni-

the entire class of joint-b distributions. tary characteristic function operator correspondentgg® ~2 )
In order to characterize all the different correspondence rules”Y P P

and, hence, the entire class of J'_Oim{b distributions, Cohen has_ 2Cohen does not preclude the possibility of functional dependence of the
proposed the kernel method, which assumes that all characteriglithel on the variables and the signal [1, p. 140]. However, we restrict the
functions can be generated by weighting any one particular one witiscussion to the important case of bilinear distributions, which precludes
an arbitrary kernel [1, p. 229]. That is, given a particular characterisﬁl,?nal'deper_‘der_‘t ke_rnels._ Moreover, we are |nteres§ed ina chare_lcterlzatlon of
ilinear distributions in which the kernel is not a function of the variables, as is

function, sayM,, all the infinitely many characteristic functions CaNrye for all covariance-based generalizations [10], [11], and for Cohen’s class

be generated as of bilinear TFR’s [1] and the affine class of bilinear time-scale representations
[3], [2], in particular.
(M () (5) (v, 3) = (Mos)(a, B)p(a, 3) (5) SWe use the fact that iff is a linear operator on a complex inner product
' : ) i spaceH, then(As, sy = 0 for all s € H & A = 0; see, for example, [18,
p. 374].

) . . . . 4 ; i i —

I\We restrict the discussion to kernels that are functionally independent of An operatorU is unitary if (U's, U's) = (s,s) forall s.
the signal and the variables. See remarks in footnote 3 on the issue of kernEWhich follows from the fact that/“* is a unitary operator ifA is
dependence. Hermitian and that the composition of unitary operators is unitary.
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and Mg“’l’“’z’”"“’N), the following relationship must hold for all does not generate all joinf-C distributions. Indeed, a specific
(ar,az, -, an) € RV: counterexample is constructed in [17] to show that the characteristic
functions corresponding to the two correspondences in (16) are not
: related by a weighting kernel.

for somef: RY — R. (11) Similarly, it can be easily verified by using the Corollary to
Corollary: A particular necessary condition for the validity of thel® Proposition that the joint frequency-scale and time-frequency-
kernel method is scale distributions discussed in [1, p. 258-259] are not completely

characterized by the kernel method.

MgalaQZH”ac‘N) — ejf(alyazx"';aN)M(ZC"lvc“Zx"';C‘N)

AL _JA jA je _jA JAN—
eI ALI A2 | AN i JAN AN |

i A
cel

for somec € R. (12) V. DISCUSSION

The necessary condition stated in the Proposition is rather stringent.
IV. EXAMPLES To appreciate this, we use the Baker—Campbell-Hausdorff formula,
1) Time and FrequencyDefining the time and frequency Hermi- which can be stated, to third order, as [20]
tian operators as o
. A8
J . .
Ts)(t) = ts(t d s)(t) = —=—5(t
(Ts)(t) = ta(t) and (Fs)(t) = —2-5(1 _ exp HA*B* Ip- %M,D] _ %[97[5]...”
[1]8, respectively, we have (17)
(T ) (1) = *™s(t) and (" ) (t) = s(t + 1) ]
whereD = [A, B] = AB — BA is the commutator operator. One
[1]. The following relationships hold between the three main corref the simplest nontrivial special cases is when the commutator

spondences [1, p. 155] commutes with both the operators, in which case, we have the
2R OTHTF) _ —jwbr j2nrF j270T _ jwbr j270T j2nrF following relationships [1], [20]:
(13) A _ GI(A+B) —(1/2)D _ —(1/2)D j(A+B)
L . e iB_jA —D —D _jB _jA
from which it can be easily verified that all the three correspondences =ecete T =ec Tee. (18)

satisfy (11) pairwise. In fact, the relationships (13) can be used to
show that the necessary and sufficient condition (8) is satisfied foven in this case, unlesB = jcI,c € R, the conditions of the
all pairs of orderings, and thus, the kernel-based characterizatioroposition are violated, and the kernel method does not hold. Note
(6) does indeed generate all possible bilinear joint time-frequentiyat for time and frequencyl = (j/2x)I, and (18) yields (13),
distributions. making the kernel method work. Moreover, since this commutator
2) Time and Scale:Define the operataf = %(7}'4-]-'7) that is relationship does not change for operators that are unitarily equivalent
associated with scale in [1]The corresponding exponential operatoto time and frequency [21], [19], joint distributions of variables that
is the scaling operatofe’2"7Cs)(t) = e/?s(e”t) [1]. The three are unitarily equivalent to time and frequency [7], [21], [19] are also
main characteristic function operators forandC are related as [1] completely characterized by the kernel method.
Li2R(OT 15C) . Anqther spec!al case studied in [1] regarding joint distributions
involving scale is

o

27 — 1 ool i

D=[ABl=cal+cA (19)
C _o—1 § N
=exp |j270 E 97\t 6]2"9T€]270C, or . . . .
o which results in the relationship [1, p. 228]
(14) L , , o
6]’27\'(07—4»0'(7) eju.A-i-J(J’B _ ejyucl/czejuuAeJﬂBe]u.A (20)
1270C _9270T . 1—e™° —20 .
= CJ (3;7 exp |:]27T9 <T — e )T:| Where c1,Ca € C, and
_ J270T j2rmoC
= ¢ e 1 . —33
Y 1= ——[1 = (14 jBc2)e ?72)].
1— 1 » Iz — | )
- exp {jgﬂ-e <w _e 2”)7}7 and Jpes
[
(15) Again, (20) implies that the condition (11) is violated for the
32707 j2weC _ j2maC j2m0T j2m0(e™7 ~1)T correspondences
— 6j27r(-)(lfea)TejZWJCejZﬂ'HT. (16) M(iu.ﬂ) — 6ja.A+jBB and 11{[&0"»"‘]) _ ejﬁﬁejaf\

We note that none of the unitary characteristic function operators o . . .
nd as a specific example of this case, we showed in the last section

is simply a scalar multiple of the others for arbitrary values 01 . L
Py o p S X y that the kernel method does not hold for joitC distributions (and,

the parameters; instead of a weighting function,operator relates . - . .

: - ..thus, for variables that are unitarily equivalent to time and séale).
pairs of correspondences. Thus, the condition of the Proposition
[and, in particular, (1)] is violated, and hence, the kernel method

6 ) B 81t can be readily verified that of the specific pairs of variables that have

Cohen uses the radian frequency operatdts)(t) = —j(¢). been studied in the literature (see, for example, [1], [4], [19], [7]), only time

A different correspondence for scale is argued in [7] and [19]. Howeveand frequency and those unitarily equivalent to time and frequency satisfy
even for that correspondence, the kernel method does not hold for time &h#). Moreover, the above discussion based on the BCH formula suggests
scale. that it may even be true, in general, that no other pairs satisfy the condition.
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VI. CONCLUSIONS [12] M. Scully and L. Cohen, “Quasiprobability distributions for arbitrary

Cohen’s general method for generating distributions of arbitrary ggig?;skdlg Thse':\,hﬁ'rcks. g;rfng‘aesrevgﬁ:g\é'lgs'7}<'m and W. W.

variables, when viewed from the perspective of operator correspqis] L. Cohen, “Generalized phase-space distribution functiods,Math.

dences, is a powerful and versatile tool. However, characterizing all Phys, vol. 7, pp. 781-786, 1966.

the different operator correspondences is nontrivial, and the simplé] A. M-ISaYGEd a?ci_D- L. Jgnesylé(éfétri %JU'\f/alAence ?f %enerar?z‘;d JO'Int
; signal representations,” iRroc. nt. Conf. Acoust., Speech Signal

kernel method prqposed by Cohen does not encompass all poss_,lble Processing—ICASSP ‘94995, pp. 1533-1536,

lcorrgspondences In geﬂe.ral. In fact, the necessary Condltlonslderl —, “Equivalence of generalized joint signal representations of arbi-

in this paper for the validity of the kernel method are rather stringent ~ trary variables,'EEE Trans. Signal Processingol. 44, pp. 2959—2970,

and, for pairs of variables that have been studied in the literature, we Dec. 1996.

argue that they hold only for time and frequency and for variabld$6] R. G. Baraniuk, “Covariant time-frequency representations through
that are unitarily equivalent to time and frequency. unitary equivalence,IEEE Signal Processing Lettpp. 79-81, Mar.

. . . 1996.

Thus, in general, applying the kernel method to a particulgft7] __ | “A limitation of the kernel method for joint distributions of
correspondence rule generates a proper subset of the entire class of arbitrary variables,TEEE Signal Processing Lefpp. 51-53, Feb. 1996.
joint distributions. However, it is conceivable that the families of joint18] A. QNS-’ Naylor sﬂd % 'T(- 29||_l-'nea:/0r>8fat1058£heory in Engineering

Tt ; s H an cience ew YOrk: springer-veriag, .
distributions generated by a finite s.et of correqunde_ncg rul_es, via [tf& A. M. Sayeed and D. L. Jones, “Integral transforms covariant to unitary
kernel method, may cover the entire class of joint distributions. operators and their implications for joint signal representatiofE=E

It is worth noting that covariance-based generalizations of joint  Trans. Signal Processingol. 44, pp. 1365-1377, June 1996.
distributions [10], [11], [16], which necessarily impose a joint grouf20] R. M. Wilcox, “Exponential operators and parameter differentiation in
structure on the variables, naturally yield a kermnel method that A duantum physics,J. Math. Phys.vol. 8, pp. 962-982, 1967. =

t Il the ioint distributi in th | Th it mi ffl%l] R. G. Baraniuk and L. Cohen, “On joint distributions of arbitrary
ge”e“’ﬁ‘ €s a € Jjoint dis “. u |0r'15 In the class. us, it mig variables,”|IEEE Signal Processing Lettvol. 2, pp. 10-12, Jan. 1995.
be fruitful to study the relationship between the two approaches
for arbitrary joint distributions in order to develop a systematic
characterization of all the correspondence rules in Cohen’s general
method.
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