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IV. DISCUSSION AND CONCLUSIONS

The GC estimate has been shown to be invariant with respect to the
statistical behavior ofxxx1, provided thatxxx2; � � � ; xxxM have stationary
Gaussian distributions and are statistically independent ofxxx1: This
invariance extends the utility of the GC estimate from passive to
active detection scenarios. An example simulating a three-channel
matched filter scenario was described. This example demonstrated
that a GC-based multiple-channel matched filter can, at least in some
cases, provide better detection performance than is obtained using
multiple individual two-channel MSC-based detectors.

Other applications, in the area of cyclostationary signal detection
as suggested by [8], for example, appear promising but need further
investigation.
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On the Equivalence of the Operator and Kernel
Methods for Joint Distributions of Arbitrary Variables

Akbar M. Sayeed

Abstract—Generalizing the concept of time-frequency representations,
Cohen has recently proposed a method, based on operator correspondence
rules, for generating joint distributions of arbitrary variables. As an
alternative to considering all such rules, which is a practical impossibility
in general, Cohen has proposed the kernel method in which different
distributions are generated from a fixed rule via an arbitrary kernel. In
this correspondence, we derive a simple but rather stringent necessary
condition, on the underlying operators, for the kernel method (with the
kernel functionally independent of the variables) to generateall bilinear
distributions. Of the specific pairs of variables that have been studied,
essentially only time and frequency satisfy the condition; in particular,
the important variables of time and scale do not. The results warrant
further study for a systematic characterization of bilinear distributions
in Cohen’s method.

I. INTRODUCTION

Time-frequency representations (TFR’s), such as the Wigner distri-
bution and the short-time Fourier transform, represent signal charac-
teristics jointly in terms of time and frequency and are powerful tools
for nonstationary signal analysis and processing [1]. However, due to
their inherent structure, TFR’s can accurately represent only a limited
class of nonstationary signal characteristics. In an effort to expand
the applicability of joint signal representations to a broader class
of signals, substantial amount of research has been directed to the
study of joint distributions of variables other than time and frequency
[2]–[7]. Spurred by the interest in the wavelet transform [8], joint
time-scale representations constituted the first such generalizations
[2], [3] and have received considerable attention.

In view of this recent trend, general theories for joint distributions
of arbitrary variables have been proposed by many authors [1], [5],
[9]–[11]. The first such generalization was proposed by Scully and
Cohen [12] and developed by Cohen [1], [5] in direct extension
of his original method for generating joint TFR’s [13]. Baraniuk
proposed a general approach based on group theoretic arguments [9]
that was shown by Sayeed and Jones [14], [15] to be equivalent to
Scully and Cohen’s method. Other covariance-based generalizations
have also been proposed [10], [11], [16], which complement Cohen’s
distributional method by characterizing joint representations in terms
of covariance properties. However, Cohen’s method seems to be
the most general approach to date since no joint group structure is
imposed on the variables as is done in [10], [11], and [16].

Fundamental to Cohen’s method is the idea of associating variables
with Hermitian (self-adjoint) operators [1]. For given variables, the
entire class of joint distributions is generated by the infinitely many
(in general) operator correspondence rules for an exponential function
of the variables (the characteristic functionoperator method[1]). As
an alternative to considering all possible correspondence rules, which
is a practical impossibility in general, Cohen has proposed thekernel
methodin which a fixed operator correspondence is used and different
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joint distributions are generated via an arbitrary kernel. In [17], a
simple counterexample is constructed to show that the kernel method
does not generate all the correspondence rules for the variables of
time and scale.

In this correspondence, we show that for two variables, say,a

and b, the corresponding Hermitian operatorsA andB must satisfy
rather stringent conditions, such as

e
j�A

e
j�B

= e
jf(�;�)

e
j�B

e
j�A

; for all (�; �) 2 2
;

and for somef : 2
! (1)

for the kernel method1 to generate the entire class of bilinear
distributions determined by the operator method. We also generalize
the result to an arbitrary number of variables and argue that of the
specific variables considered in the literature, only time and frequency
(and those unitarily equivalent to time and frequency) satisfy the
conditions. We begin with a brief description of Cohen’s method.

II. COHEN’S METHOD

We describe the method for two variables; extension to more
variables will be obvious. We assume that all signals of interest
belong toL2

( ), which is the space of finite energy signals.
The characteristic functionM of a jointa-b distributionP of signal

s is defined as [1]

(Ms)(�; �) = (Ps)(a; b)e
j2��a

e
j2��b

da db (2)

and the distribution can be recovered fromM as

(Ps)(a; b) = (Ms)(�; �)e
�j2��a

e
�j2��b

d� d�: (3)

The key observation is that the characteristic function can be directly
computed from the signal by using a characteristic function operator
MMM (�;beta) corresponding to the functionej2��aej2��b; as

(Ms)(�; �) = hMMM
(�;�)

s; si

� (MMM
(�;�)

s)(x)s
�
(x) dx: (4)

Since the operatorsA andB do not commute in general, there are
infinitely many ways in which the functionej2��aej2��b can be asso-
ciated with an operator; three prominent examples areej2�(�A+�B)

(Weyl correspondence),ej2��Aej2��B, andej2��Bej2��A, which we
will use throughout this correspondence. The corresponding infinitely
many joint distributions can then be recovered via (3), and theydefine
the entire class of jointa-b distributions.

In order to characterize all the different correspondence rules
and, hence, the entire class of jointa-b distributions, Cohen has
proposed the kernel method, which assumes that all characteristic
functions can be generated by weighting any one particular one with
an arbitrary kernel [1, p. 229]. That is, given a particular characteristic
function, sayMo, all the infinitely many characteristic functions can
be generated as

(M(�))(s)(�;�) = (Mos)(�; �)�(�; �) (5)

1We restrict the discussion to kernels that are functionally independent of
the signal and the variables. See remarks in footnote 3 on the issue of kernel
dependence.

where� is the weighting kernel.2 The corresponding joint distribu-
tions P (�) can then be recovered by using (5) in (3). In the case
of time-frequency, fixingMo to be the Weyl correspondence yields
the following commonly used characterization of Cohen’s class of
TFR’s first proposed in [13]

(C(�)s)(t; f) = �(�; �)s(u+ �=2)

� s
�
(u� �=2)e

j2��(u�t)
e
�j2��f

du d� d�: (6)

III. N ECESSARY CONDITIONS FOR THE

VALIDITY OF THE KERNEL METHOD

According to Cohen’s kernel method, any two characteristic func-
tions, say,M1 and M2, corresponding to two different operator
correspondencesMMM (�;�)

1 andMMM (�;�)

2 must be related by

(M1s)(�; �) �hMMM
(�;�)

1 s; si = �(�; �)(M2s)(�; �)

��(�; �)hMMM
(�;�)

2 s; si; for all s 2 L
2
( )

(7)

for some� :
2 ! : It follows that a necessary and sufficient

condition for the kernel method to hold is thatany two operator
correspondences must be related by3

MMM
(�;�)

1 = �(�; �)MMM
(�;�)

2 (8)

for some�: In particular, the above relationship must hold in the
case when bothMMM (�;�)

1 andMMM (�;�)

2 are unitary operators,4 in which
case, it can be easily verified thatj�(�; �)j = 1 for all (�; �): For
example, all characteristic function operators of the following form
are unitary5

MMM
(�;�)

=

k

e
j2� C where (9)

Ck =A or B; k =
�k if Ck = A

�k if Ck = B
; and

k

�k =�;

k

�k = �: (10)

Two specific cases are the correspondences

MMM
(�;�)

1 = e
j2��A

e
j2��B andMMM (�;�)

2 = e
j2��B

e
j2��A

which result in the relationship (1). Extension to more than two
variables immediately follows, and we have the following general
result.

Proposition: Let A1;A2; � � � ;AN be the Hermitian operators
corresponding to theN variablesa1; a2; � � � ; aN in Cohen’s method.
Then, a necessary condition for the kernel method to generateall
bilinear joint distributions ofa1; a2; � � � ; aN is that forany two uni-
tary characteristic function operator correspondencesMMM

(� ;� ;���;� )

1

2Cohen does not preclude the possibility of functional dependence of the
kernel on the variables and the signal [1, p. 140]. However, we restrict the
discussion to the important case of bilinear distributions, which precludes
signal-dependent kernels. Moreover, we are interested in a characterization of
bilinear distributions in which the kernel is not a function of the variables, as is
true for all covariance-based generalizations [10], [11], and for Cohen’s class
of bilinear TFR’s [1] and the affine class of bilinear time-scale representations
[3], [2], in particular.

3We use the fact that ifAAA is a linear operator on a complex inner product
spaceH, thenhAAAs; si = 0 for all s 2 H , AAA � 0; see, for example, [18,
p. 374].

4An operatorUUU is unitary if hUUUs;UUUsi = hs; si for all s:
5Which follows from the fact thatejA is a unitary operator ifA is

Hermitian and that the composition of unitary operators is unitary.
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and MMM
(� ;� ;���;� )

2 , the following relationship must hold for all
(�1; �2; � � � ; �N ) 2 N :

MMM
(� ;� ;���;� )

1 = e
jf(� ;� ;���;� )

MMM
(� ;� ;���;� )

2

for somef : N
! : (11)

Corollary: A particular necessary condition for the validity of the
kernel method is

e
jA

e
jA

� � � e
jA = e

jc
e
jA

e
jA

� � � e
jA

;

for somec 2 : (12)

IV. EXAMPLES

1) Time and Frequency:Defining the time and frequency Hermi-
tian operators as

(T s)(t) = ts(t) and (Fs)(t) = �
j

2�
_s(t)

[1]6, respectively, we have

(ej2��T s)(t) = e
j2��t

s(t) and (ej2��Fs)(t) = s(t+ �)

[1]. The following relationships hold between the three main corre-
spondences [1, p. 155]

e
j2�(�T+�F) = e

�j���
e
j2��F

e
j2��T = e

j���
e
j2��T

e
j2��F

(13)

from which it can be easily verified that all the three correspondences
satisfy (11) pairwise. In fact, the relationships (13) can be used to
show that the necessary and sufficient condition (8) is satisfied for
all pairs of orderings, and thus, the kernel-based characterization
(6) does indeed generate all possible bilinear joint time-frequency
distributions.

2) Time and Scale:Define the operatorC = 1

2
(T F+FT ) that is

associated with scale in [1].7 The corresponding exponential operator
is the scaling operator(ej2��Cs)(t) = e�=2s(e�t) [1]. The three
main characteristic function operators forT andC are related as [1]

e
j2�(�T+�C)

= exp j2��
e� � 1

�
� e

�
T e

j2��C
e
j2��T

= exp j2��
e� � � � 1

�
T e

j2��T
e
j2��C

; or

(14)

e
j2�(�T+�C)

= e
j2��C

e
j2��T exp j2��

1� e��

�
� e

�2�
T

= e
j2��T

e
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� exp j2��
(1� e��)(�+ 1)

�
� e

�2�
T ; and

(15)

e
j2��T

e
j2��C = e

j2��C
e
j2��T

e
j2��(e �1)T

= e
j2��(1�e )T

e
j2��C

e
j2��T

: (16)

We note that none of the unitary characteristic function operators
is simply a scalar multiple of the others for arbitrary values of
the parameters; instead of a weighting function, anoperator relates
pairs of correspondences. Thus, the condition of the Proposition
[and, in particular, (1)] is violated, and hence, the kernel method

6Cohen uses the radian frequency operator(Ws)(t) = �j _s(t):
7A different correspondence for scale is argued in [7] and [19]. However,

even for that correspondence, the kernel method does not hold for time and
scale.

does not generate all jointT -C distributions. Indeed, a specific
counterexample is constructed in [17] to show that the characteristic
functions corresponding to the two correspondences in (16) are not
related by a weighting kernel.

Similarly, it can be easily verified by using the Corollary to
the Proposition that the joint frequency-scale and time-frequency-
scale distributions discussed in [1, p. 258–259] are not completely
characterized by the kernel method.

V. DISCUSSION

The necessary condition stated in the Proposition is rather stringent.
To appreciate this, we use the Baker–Campbell–Hausdorff formula,
which can be stated, to third order, as [20]

e
jA

e
jB

= exp j A+ B +
j

2
D �

1

12
[A;D]�

1

12
[D;B] � � �

(17)

whereD = [A;B] � AB � BA is the commutator operator. One
of the simplest nontrivial special cases is when the commutator
commutes with both the operators, in which case, we have the
following relationships [1], [20]:

e
jA

e
jB = e

j(A+B)
e
�(1=2)D = e

�(1=2)D
e
j(A+B)

= e
jB
e
jA

e
�D = e

�D
e
jB
e
jA

: (18)

Even in this case, unlessD = jcIII; c 2 , the conditions of the
Proposition are violated, and the kernel method does not hold. Note
that for time and frequency,D = (j=2�)III, and (18) yields (13),
making the kernel method work. Moreover, since this commutator
relationship does not change for operators that are unitarily equivalent
to time and frequency [21], [19], joint distributions of variables that
are unitarily equivalent to time and frequency [7], [21], [19] are also
completely characterized by the kernel method.

Another special case studied in [1] regarding joint distributions
involving scale is

D = [A;B] = c1III + c2A (19)

which results in the relationship [1, p. 228]

e
j�A+j�B = e

j��c =c
e
j��A

e
j�B

e
j�A (20)

where c1; c2 2 , and

� =
1

j�c2
[1� (1 + j�c2)e

�j�c )]:

Again, (20) implies that the condition (11) is violated for the
correspondences

MMM
(�;�)
1 = e

j�A+j�B and MMM
(�;�)
2 = e

j�B
e
j�A

and as a specific example of this case, we showed in the last section
that the kernel method does not hold for jointT -C distributions (and,
thus, for variables that are unitarily equivalent to time and scale).8

8It can be readily verified that of the specific pairs of variables that have
been studied in the literature (see, for example, [1], [4], [19], [7]), only time
and frequency and those unitarily equivalent to time and frequency satisfy
(12). Moreover, the above discussion based on the BCH formula suggests
that it may even be true, in general, that no other pairs satisfy the condition.
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VI. CONCLUSIONS

Cohen’s general method for generating distributions of arbitrary
variables, when viewed from the perspective of operator correspon-
dences, is a powerful and versatile tool. However, characterizing all
the different operator correspondences is nontrivial, and the simple
kernel method proposed by Cohen does not encompass all possible
correspondences in general. In fact, the necessary conditions derived
in this paper for the validity of the kernel method are rather stringent
and, for pairs of variables that have been studied in the literature, we
argue that they hold only for time and frequency and for variables
that are unitarily equivalent to time and frequency.

Thus, in general, applying the kernel method to a particular
correspondence rule generates a proper subset of the entire class of
joint distributions. However, it is conceivable that the families of joint
distributions generated by a finite set of correspondence rules, via the
kernel method, may cover the entire class of joint distributions.

It is worth noting that covariance-based generalizations of joint
distributions [10], [11], [16], which necessarily impose a joint group
structure on the variables, naturally yield a kernel method that
generates all the joint distributions in the class. Thus, it might
be fruitful to study the relationship between the two approaches
for arbitrary joint distributions in order to develop a systematic
characterization of all the correspondence rules in Cohen’s general
method.
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Block Sampling Rate Conversion Systems Using
Real-Valued Fast Cyclic Convolution Algorithms

Hideo Murakami

Abstract—The recently obtained real-valued transform is related to
the polyphase decomposition of a sequence. This observation is applied
for deriving sampling rate conversion systems that are implemented by
the real-valued fast cyclic convolution algorithms. The systems include
interpolation by an integer factor, decimation by an integer factor, and
sampling rate conversion by a rational factor. The proposed implementa-
tions are useful when signals and impulse responses of filters are restricted
to be real.

I. INTRODUCTION

The design of an efficient sampling rate conversion system is
a major problem for the multirate digital signal processing. The
filtering processing takes the most of computational time in sampling
rate conversions. The computational efficiency is increased by such
technologies as the polyphase filtering and the fast Fourier transform
(FFT) algorithm [1]. The basic idea of the polyphase implementation
is to commute the filtering operation to a low sampling rate whereby
computational efficiency is achieved. Since signals are real in most
of the practical applications, it is important to search for efficient im-
plementation of sampling rate conversion systems for real sequences.
Real-valued fast algorithms are investigated in the literature [2]. Let
x(n) be a real sequence of lengthN , and the sequence is represented
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