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Abstract— The key to reliable communication is a funda-
mental understanding of the interaction between the sig-
nal space and the channel. In time- and frequency-selective
multi-antenna (space-time) fading channels this interaction
happens in time, frequency and space. In this paper we
propose a four-dimensional Karhunen-Loeve-like Fourier se-
ries representation for space-time channels that captures
the essence of such interaction and exposes the intrinsic
degrees of freedom in the channel. The four dimensions
are: time, frequency and the two spatial dimensions at the
transmitter and receiver. The key signal space parameters
are the signaling duration, bandwidth and the two array
apertures. The corresponding channel parameters are the
delay, Doppler and the two angular spreads associated with
the scattering environment. The representation induces a
virtual partitioning of propagation paths in time, frequency
and space that reveals their contribution to channel capac-
ity and diversity. It also exposes fundamental dependencies
between time, frequency and space thereby revealing the
essential independent degrees of freedom in the channel.

Keywords— MIMO systems, Multipath, Doppler, Beam-
forming, Capacity, Diversity

I. INTRODUCTION

The capacity and diversity afforded by a time-
and frequency-selective multi-antenna (space-time) fading
channel is due to the distribution of scatterers in space and
the relative motion of the transmitter and receiver arrays.
The distribution of scatterers and antenna array param-
eters determine the statistics of the space-time channel,
which in turn determine the channel capacity and diver-
sity. Accurate modeling of the scattering environment is
thus paramount to realizing the full potential of antenna
arrays in wireless communications. Existing channel mod-
eling approaches completely ignore an important observa-
tion in this context: the key to reliable communication is
a fundamental understanding of interaction between the
channel and the signal space. An effective channel repre-
sentation that captures the essence of such interaction is
all this is needed from a communication theoretic view-
point. In space-time channels, this interaction happens in
four signal space dimensions: time, frequency, the spatial
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dimension at the transmitter and the spatial dimension at
the receiver.

In this paper, we propose a new virtual representation for
space-time channels that captures the essence of channel-
signal space interaction in time, frequency and space. Each
physical scatterer can be associated with a unique An-
gle of Departure (AoD), Angle of Arrival (AoA), delay,
and Doppler shift. The virtual representation replaces
the actual physical scatterers with virtual scatterers as-
sociated with fixed uniformly spaced AoD’s, AoA’s, de-
lays and Doppler shifts on a four-dimensional (4D) grid.
The grid spacings in the four dimensions correspond to
the resolutions in time, frequency and the two spatial di-
mensions that are determined by the signaling bandwidth,
duration, and array apertures, respectively. In essence, the
virtual representation is a 4D Fourier series for the time-
varying frequency response channel matrix, H (¢, f), and
yields many powerful insights. First, under the assump-
tion of uncorrelated scattering, we show that H (¢, f) is
a segment of a 4D wide-sense stationary (WSS) process
and the virtual representation coefficients constitute the
corresponding uncorrelated spectral representation. Thus,
the virtual representation captures the essential degrees of
freedom in the channel in temporal, spectral and spatial di-
mensions that in turn determine its statistics, capacity and
diversity. Second, via the concept of virtual scatterers, the
virtual representation also yields a simple and intuitively
appealing interpretation of the scattering environment and
its effects on capacity [1]. Finally, the representation in-
duces a virtual partitioning of propagation paths that ex-
plicitly reveals their contribution to channel capacity and
diversity. In particular, it unravels fundamental depen-
dencies in time, frequency and space that enables accurate
estimates of channel capacity.

The next section presents a general model for space-time
channels. Section IIT introduces the virtual representation,
including the virtual path partitioning and its implications
for channel statistics. Section I'V discusses fundamental de-
pendencies between time, frequency and space. Section V
shows some numerical results that confirm the insights af-
forded by the virtual framework.



II. A GENERAL PHYSICAL MODEL FOR SPACE-TIME
CHANNELS

Consider a transmitter array with P elements and a re-
ceiver array with @) elements. We are interested in repre-
senting the space-time channel over a signaling duration T’
and two-sided bandwidth W. In the absence of noise, the
transmitted and received signals are related as

W/2
x(1) :/ H(t, [)S(f)e’*™tdf, 0<t<T, (1)
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where s(t) is the P-dimensional transmitted signal, S(f)
is the Fourier transform of the transmitted signal, ®(¢) is
the @-dimensional received signal, and H (¢, f) denotes the
time-varying frequency response matriz coupling the trans-
mitter and receiver elements. We will primarily focus on
H(t, f) and we index entries of H(¢, f) as H(i, k;t,f) :
1=0,1,---,Q—-1, k=0,1,---,P—1.

For simplicity we focus on one-dimensional ULAs of an-
tennas at the transmitter and receiver and consider far-field
scattering characteristics. Let dp and dgr denote the an-
tenna spacings at the transmitter and receiver, respectively.
The channel matrix can be described via the array steering
and response vectors given by

1 —j2n8r —jon(P—1)8r]"
ar(fr) = ﬁ[l’e e }
1 . , T
R(QR) - ﬁ |:1’ 6_]2W9R1 Tty e_JQW(Q_l)QH} (2)

where 6 is related to the AoA/AoD variable ¢ (measured
with respect to the horizontal axis — see Figure 1) as
6 = dsin(¢)/A = asin(é), A is the wavelength of propa-
gation, and a = d/\ is the normalized antenna spacing. In
this paper, we will restrict ourselves to critical (A/2) spac-
ing: ar = ag = 0.5. In this case, there is a one-to-one
mapping between # € [—0.5,0.5] and ¢ € [—7/2,7/2]. The
effect of larger antenna spacing on capacity and diversity
is discussed in detail in [1].

The channel matrix H (¢, f) can be generally modeled as

N
H(t,f) =) Buar(Orn)af (br,)e > e™?l - (3)
n=1
which corresponds to signal propagation along N
paths with {67, € [S7_,Sr,] C [-0.5,0.5)} and

{0rn € [Sr_,Sr,] C [-0.5,0.5)} as the spatial angles
(AoDs/AoAs) seen by the transmitter and receiver, respec-
tiVGIY7 {Vn = V(QR,nyeT,n) S [_fma)ufmax]} and {Tn =
T(0rn,01n) € [0, ™s]} as the Doppler shifts and delays,
respectively, and {3,} as the corresponding independent
complex Gaussian path gains. Note that v,, and 7, depend
on the spatial location of scatterers, mpg denotes the de-
lay spread and fmax denotes the one-sided Doppler spread.
The physical model is illustrated in Figure 1(a).

III. VIRTUAL SPACE-TIME CHANNEL REPRESENTATION

In (3), each propagation path through the scattering
environment is associated with an AoD, AoA, delay and

SCATTERERS\X

RECEIVER
ARRAY

TRANSMITTER
ARRAY

SPATIAL MULTIPATH CHANNEL

{SCATTERERS\X

RECEIVER
ARRAY

TRANSMITTER

ARRAY SPATIAL MULTIPATH CHANNEL

(b)

Fig. 1. A schematic illustrating physical modeling versus virtual
representationin the spatial dimension. (a) Physical modeling.
Each scattering path is associated with a fading gain (8 ) and
a unique pair of transmit and receive angles (¢1 ,, ¢r ) corre-
sponding to scatterers distributed within the angular spreads. (b)
Virtual representation of the scattering environment depicted in
(a). The virtual angles are fixed a priori and their spacing de-
fines the spatial resolution. The channel is characterized by the
virtual coefficients, {Hy(q,p) = hqp}, that couple the P vir-
tual transmit angles, {7}, with the Q virtual receive angles,

{@R,q}'

Doppler shift which can be arbitrarily distributed within
the angular, delay and Doppler spreads. The virtual repre-
sentation replaces the physical propagation paths with vir-
tual ones corresponding to fixed AoD’s, AoA’s, delays and
Doppler shifts that are determined by the spatial, temporal
and spectral resolution afforded by the finite dimensional
space-time signal space. The notion of virtual angles is
illustrated in Figure 1(b). The virtual channel representa-
tion can be expressed as
H(t,f) = Y Hv(g,p;mar(e/Q)af (p/P)

q,p,m,l

€j27rmt/T6—j27Tlf/W (4)

corresponding to fixed virtual AoD’s;, AoA’s, delays and
Doppler shifts defined as

Orp=p/P, P-<p<Pi, Org=9/Q Q-<qg<Qy
(5)
n=1l/W, 0<I<L, (6)

Um=m/T, —M <m< M,

where L = [Wmg] denotes the normalized delay spread,
and M = [T fmax | denotes the normalized Doppler spread.
Po = |Sr_P|, Py = [Sr,P], Q- = [Sr_Q],

Q@+ = [Sr, Q] define normalized angular spreads. The vir-
tual channel coefficients {Hvy (q,p;m,l)} characterize the
virtual representation. The spacings between the trans-
mit /receive virtual angles represent the spatial resolutions



that are determined by the array apertures (Afp = 1/P
and Afp = 1/Q). The spacings between the virtual
Doppler shifts and delays correspond to the spectral and
temporal resolutions, respectively, and are determined by
the signaling duration and bandwidth, respectively (Av =
1/T and AT = 1/W).

We now address the computation of the virtual represen-
tation from H(t f). Assume WLOG that P, Q are odd
and define P = (P — 1)/2, Q= (@ — 1)/2. Note that the

virtual representation (4) can be decoupled as

H(t,f) = ApHv(t, f)An (7)
Ar = [ar(=Q/Q), - ar(@/Q)] (@ x Q)
Ar = lar(—P/P),---,ar(P/P)] (P x P), (8)

where ER and :&T are discrete Fourier transform matrices,
as evident from (2) and (5).> The matrix Hy (¢, f) in (7)
is the partial virtual representation with respect to space
and can be computed by beamforming in the direction of
virtual angles

ApH(1, f)Ar

L M
Z Z V m, l €j2ﬂmt/T6—j27rlf/W(9)

=0 m=—M

HV(t’f) =

where the second equality further decomposes Hy (¢, f)
into component matrices Hy (m,!) corresponding to fixed
virtual Doppler shifts and delays, which can be computed
from Hy (, f) as

w/2
HV ml TW// HV t f —j2mmt/T j27rlf/Wdtdf

W2

(10)
Finally, the elements of Hy (m, ) are related to the discrete
physical model (3) as

Hy(g,p;m,0) = Y Pafo(Orn —1/Q)f3 (010 — p/P)

e_j’r(m_”"T)sinc(m — v, Tsinc(l — 1,(MN)

were sinc(z) = sin(7z)/(wz) and

1=
_ o-i2mei _ 2
> ok

We note that fqo(8r), frp(67), sinc(Tv) and sinc(Wr) get
peaky around the origin with increasing @, P, T and W.

o—i26d 5sin(rQ0)

sin(7f) (12)

A. Virtual Path Partitioning

The virtual representation induces a partitioning of prop-
agation paths that is very insightful in determining their
contribution to capacity and diversity and to expose the
dependencies between the temporal, spectral and spatial

INote that ZR and ZT contain all possible virtual angles, some of
which lie outside the angular spreads. Hy (g, p;m,!) will be zero for
those angles.

degrees of freedom in the channel. First define the follow-
ing spatial bins in the (6, 67) space
Brp={(0r.,0r) : (p—1/2)/P < br < (p+1/2)/P} (13
Brq={(0r,07) : (¢ —1/2)/Q < 0r < (¢+1/2)/Q} (14
By m={(0r.07): (m—1/2)/T < v(f) < (m+ 1/2)/T(15
Bri={(6r,0r) : (1 = 1/2)/W < 7(0) < (1 +1/2)/ W16
corresponding to transmit spatial resolution, receive spa-
tial resolution, spectral resolution, and temporal resolu-

tion. Define the following corresponding subsets of propa-
gation paths

ST)p:{n : GT,n € BT’p}, SR’q = {77, : HR,n S Bqu}(l’Y)

~— — ~— ~—

Sum={n vy, € Bym}, Sri={n:7 € B} (18)
Note that
U ST,p = U SR,q = U Sz/,m = U ST,l
P q m 1
= JSrp N Srq N Sym NSy ={1,2,--,NX19)

p,q,m,l

With this virtual path partitioning H (¢, f) can be approx-
imately expressed as

2.

q,p,m,l
aR((]/Q)ag (p/P)ej27rmt/T6—jQ7rlf/W(20)

where S pmi = Stp N Srq N Sum NSy and the virtual
channel coefficients in (11) can be approximated as

> B

nESq,p,m,1

H(t, f) =

> Ba

n€Sq,p,m,i

Hy(q,p;m,l) = (21)

The above equation states that Hy (g, p; m,{) is determined
y the sum of gains of all the paths whose transmit and
receive angles correspond to the spatial bin

Bgpmi = Brp N Brg N Bym N Bry (22)

defined by the spatial, temporal and spectral resolutions in
the neighborhood of the p'” virtual transmit angle, ¢**
tual receive angle, m*® virtual Doppler shift and [*? virtual
delay. We note that the approximations in (20) and (21)
get more accurate with increasing P, @, T and W.

B. Channel Statistics

One of the most important characteristics of the
virtual representation is that the virtual coefficients
{Hv(g,p;m,l)} are approximately uncorrelated under the
assumption of uncorrelated path gains: E[3,8}] =
O'T%(Sn_n/ where §,, denotes the kronecker delta function and
o2 denotes the power in each path. This observation is di-
rectly evident from (21)

E[Hy (q,p;m,)Hy (¢, p'im/ )] =

2
2. o

nE€Sq,p,m,i

5q—q’5p—p’5m—M’5l—l’



but can also be directly inferred from (11). Thus, from (20)
we have

Ri(Ai, Ak; At, Af)

B[H (i, k;t, [YH*(& k';t', )]
Z O-;pymyl6_‘72#in/er2pr1€/1)

q,p,m,l
pd2mmAL/T ,—j2mIAf [W

Q

(24)
where Ai=i—4¢, Ak=k—k At=t—t Af=f—F,

and
o mi = E[Hv(q,pim, )%
3" 02| fo(Orn — a/Q)*Ifp (07,0 — p/P)I

|sinc(m — v, T)|*|sinc(l — W,)|?

2
On

n€Sqp,m,i

(25)
(26)

X

is the power in the virtual coefficient Hy (¢, p; m,!) and the
approximation in (26) corresponds to virtual path parti-
tioning. Relation (24) yields the insightful conclusion that
under the assumption of uncorrelated path gains, H (¢, f)
is a segment of a 4D WSS process in the two spatial di-
mensions, time and frequency, and the virtual coefficients
{Hv(g,p;m,l)} are the corresponding uncorrelated spec-
tral representation. Furthermore, (26) states that the
power in Hy(q,p;m,l) is equal to the sum of the pow-
ers in the paths that lie in the spatial bin By, m,; defined
in (22).

IV. FUNDAMENTAL DEPENDENCIES IN TIME,
FREQUENCY AND SPACE

From (4) we may conclude that the total independent
degrees of freedom in the space-time channel are

Nsr = (Q4 —Q_41)(Py—P_+1)(L+1)(2M+1) = NsNr

27)
where Ng = (Q+ — Q- + 1)(Py — P_ + 1) represents the
degrees of freedom in space and Np = (L 4+ 1)(2M + 1)
represents the degrees in time (and frequency). However,
this conclusion implicitly assumes that the degrees of free-
dom in space, time and frequency are independent. Thus
(27) serves as an upperbound and we now use the notion of
virtual path partitioning to demonstrate that there are fun-
damental dependencies between time, frequency and space
and thus the essential degrees of freedom in the channel
may be less than the upperbound in (27).

The fundamental dependencies between time, frequency
and space are due to the fact that the delay and Doppler
spreads are related to the angular spreads — larger an-
gular spreads result in larger delay and Doppler spreads.
For given (q,p), Hv (g, p; m,l) is non-vanishing over (m,!)

for | = L—(q,p)1 cee L+(q,p) and m = M—(q,p)a S M+(q,p)
where
L= [pinr@] ] Liiam = [[axr@)] wlas

[gasvto] oo

a,p

glinl/(é’)] TJ y Myqqp)

a,p

M—(q,p):[

Consequently, the virtual representation (4) can be refined
to limit the ranges of { and m as a function of (q,p) as
above to reflect the truly essential (independent) degrees
of freedom in the channel

Li(q,p) My(q.p)

NsT,ess = Z Z Z

P I=L_(q,p) m=M_(q,p)

Note that Nsress = Ngp in (27) if and only if (Ly —
Lo+ 1) My —M_+1) = (L+1)2M + 1) for all (¢,p)
which would seldom be true particularly for channels that
are underspread (Tpsfmax < 1) in time and frequency.
This is because time- and frequency-selectivity exhibited by
Hyv (q,p;t, f) depends on the spatial resolution of the array:
higher resolutions would result in less selectivity whereas
lower resolutions will result in higher selectivity. In par-
ticular, a SISO channel will exhibit maximum time and
frequency selectivity. For larger number of antennas, the
degrees of freedom in time and frequency are distributed
between the spatial channels defined by different pairs of
virtual transmit and receive angles.

< Nsr.  (30)
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Fig. 2. A schematic illustrating the dependence of delay and Doppler
shift on the virtual transmit and receive angles.

To quantify dependencies between time, frequency and
space we have to specify explicit dependence of v and 7 on
(fr, f7). Figure 2 illustrates a simple scattering geometry
to quantify such dependencies. Consider a single scattering
cluster at a distance Ry from the transmitter and Rg from
the receiver. Suppose that vy denotes the relative velocity
between the transmitter array and the cluster and vy de-
notes the relative velocity between the receiver array and
the cluster. Let Ap and Apg denote the angular spreads
seen by the transmitter and receiver, and A, denote the
“width” or “depth” of the scattering cluster. Via simple
geometric considerations depicted in Figure 2, 7(0g, f7)
and v(6g,0r) can be estimated for any given (g, fr) as

7(0)=\/A% + |Rrfr /ar — Rrfr/ag|*/c (31)

y(H):fmax’T\/M‘i' fmax,Rm(32)

where ¢ denotes the speed of light, fmaxT = vr/c and
fmax,g = vr/c (which could be positive or negative de-
pending on the direction of relative motion). From (31)
and (32) we see that v depends on the relative velocities
and the angular spreads, whereas 7 depends on the angular
spreads as well as the “width” of the cluster. We note the
expression for 7 is stricly a lowerbound since intermediate
scattering within the cluster may result in longer delays.




V. NUMERICAL RESULTS

We now present some numerical results to illustrate the
effect of time/frequency selectivity on capacity and the ef-
fect of number of antennas on time/frequency selectivity of
the channel.

We simulated a single scattering cluster, as in Figure 2,
with angular spreads of Ay = Ap = 27/3 centered at
(¢7,0r) = (0,0). We considered N = 100 propagation
paths. We first generated N pairs of angles, {¢rn, d7n},
uniformly distributed, within the angular spreads to fix the
scatterer positions. To simulate time/frequency selectivity,
we considered a temporal signal space with N, = TW = 65
dimensions. We simulated three types of channels. CH 1
(flat): Ry = Rr = 1000m, fmaxR = fmaxT = 50 Hz,
W =1 MHz, T = 65us. CH 2 (medium selective): R =
8000m, fimax = 400 Hz, W = 1 MHz, T' = 65us. CH 3
(highly selective): R = 8000m, fmax = 400 Hz, W = 10
MHz, T' = 6.5us. Aw = 100m in all cases. Note that
CH 1 and CH 2 have the same 7" and W but CH 2
corresponds to larger delay and Doppler spreads and thus
is more selective. CH 3 has the same delay and Doppler
spread parameters but is even more selective than CH 2
due to its higher bandwidth (delay diversity is easier to
exploit in this set up). Realizations of the three channels
were generated using (3) by simulating the fading gains as
iid complex Gaussian random variables. Each realization
was normalized to yield 3" 82 = PQ.
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Fig. 3. Comparison of the three channels illustrating the effect of
time/frequency selectivity on outage capacity.

Figure 3 illustrates the effect of time/frequency selec-
tivity on outage capacity for P = () = 4 antennas. The
capacity was numerically computed using 200 independent
channel realizations at an SNR of 20dB (details to be re-
ported elsewhere due to lack of space). As evident, the
outage capacity curves get steeper (higher diversity) as the
channel gets more selective. The ergodic capacity of all
three channels is approximately 21.8 bits/s/Hz. Note that
this is consistent with the experimental results recently re-
ported in [2] and in disagreement with analytical results
reported in [3] which suggested that increased delay spread
can increase ergodic capacity. Our framework strongly sug-

gests that this conclusion is incorrect and is based on the
channel modeling assumptions used in [3] (details to be
reported elsewhere).

Figure 4 illustrates the dependencies between time, fre-
quency and space. CH 2 was simulated using P = Q = 2
and P = (Q = 4 antennas. The figure shows the contour
plots of the power in non-vanishing virtual delay-Doppler
coefficients, O'g’p’myl, for a representative (q,p) in the two
cases. It is evident that the delay-Doppler spread decreases
in the virtual spatial domain for larger number of anten-
nas, as predicted by our analysis. Note that the number
of significant Ug,p,m,l provides an estimate for Ngp .77 in
(30). Our simulations yielded Ng7 .rr/QP = 4.5 in the
2-antenna channel and 2.75 in the 4-antenna channel, con-
firming that the delay-Doppler diversity (time/frequency
selectivity) decreases with increasing number of antennas.
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Fig. 4. Contour plots of the powers in a subset of non-vanishing
virtual delay-Doppler coefficients for CH 2 for a representative
virtual angle pair (¢,p). (a) Q =P =2. (b)) P=Q = 4.
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