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Abstract—Spatial multiplexing techniques send independent of MIMO systems. Thus far, most of MIMO studies heavily
data streams on different transmit antennas to maximally exploit yse a statistical channel model that is an idealized abstraction
the capacity of multiple-input multiple-output (MIMO) fading  f gpatial propagation characteristics and assumes independent

channels. Most existing multiplexing techniques are based on an . . s o . .
idealized MIMO channel model representing a rich scattering and identically distributed (i.i.d.) fading between different

environment. Realistic channels corresponding to scattering clus- transmit-receive antenna pairs. This idealized channel model
ters exhibit correlated fading and can significantly compromise allows tractable and elegant capacity analysis and space—time
the performance of such techniques. In this paper, we study the code design. In practice, however, the channel coefficients
design and performance of spatial multiplexing techniques based penveen different transmit—receive antenna pairs exhibit cor-

on a virtual representation of realistic MIMO fading channels. . L L .
Since the nonvanishing elements of the virtual channel matrix relation due to clustered scattering in realistic environments

are uncorrelated, they capture the essential degrees of freedomand the relatively small antenna spacing. In such realistic
in the channel and provide a simple characterization of channel conditions, the capacity of MIMO channels can be substantially

statistics. In particular, the pairwise-error probability (PEP)  |ower depending on the level of correlation [7], [8]. Therefore,

analysis for correlated channels is greatly simplified in the virtual 5 channel model that accurately captures the characteristics of
representation. Using the PEP analysis, various precoding schemesth ti . ti ded f listi it
are introduced to improve performance in virtual channels. Uni- "€ Propagation environment Is needed 1or realistc capacity

tary precoding is proposed to provide robustness to unknown assessments, as well as for designing space-time modulation
channel statistics. Nonunitary precoding techniques are proposed and coding techniques that are matched to channel statistics.
to exploit channel structure when channel statistics are known at parametric physical models (see, e.g., [9]) based on array pro-
the transmitter. Numerical results are presen@ed to illustrate the cessing techniques that explicitly model signal copies arriving
attractive performance of the precoding techniques. ] ; . .
from different directions provide one such approach. However,
Index Terms—Beamforming, correlated channels, diversity, pre- - the nonlinear dependence of these models on physical channel
coding, space-time coding, spatial multiplexing, virtual channel 5 ameters, such as angles of departure/arrival, makes them
representation. e . . . . -
P rather difficult to be incorporated in transceiver design, explicit
capacity calculations, and space—time code design.
|. INTRODUCTION In this paper, we propose a framework for spatial mul-

NFORMATION theoretic studies [1], [2] indicate thattiplexing in correlated MIMO channels using airtual

multiple antennas at the transmitter and receiver, SO_Ca"{ee&)resentatmn for MIMO channels that has been introduced

multiple-input multiple-output (MIMO) systems, can dra.fecently [8]. The virtual representation captures the essence of

matically increase the capacity and diversity in Wireles{%hysmarl] mOdT“rLg wﬂ?oyt 'is com%Iexflfty, prov!desl a tra;lcttable
communication systems. Over the last few years, seve artc_atnne i ta_lrac efrlztz |onﬁant 0 fers a;'mpe and rans-
distinct bandwidth-efficient communication techniques in[—);lren tln_etr.prealorr]] 0 Ie € ec_:ts odsgg er!?g ﬁ? grtrayl
cluding space—time coding [3]-[5] and spatial multiplexing arac ertlst.|cs on ¢ annz (t:ape}(.:l ydan d|_vertS| ty fe vIr Ltj.a
[1], [6] have been developed to exploit the potential of MIM qpr:esen a Lotn corr(isgr%n S ?a It)'(e cgo;i 'ngg r?ns do”.“ta I(I)n
systems. Spatial multiplexing focuses on the rate advanta glresgec ) oiga Iat asihunc 'OTE € !nte | % Ixe IW l:a
whereas space—time coding focuses on the diversity advant dies ot arrivaiideparture. fhe resuiting virtual channe! matrix
represents the channel by beamforming in fixed directions. In
the context of space—time coding, the most attractive feature
Manuscript received May 10, 2002; revised October 25, 2002. ThYf the virtual channellmatnx is that cﬁffe_rent scattering clu§—
work was supported in part by the Office of Naval Research under Grai@rs correspond to different nonvanishing submatrices with
#N00014-01-1-0825 and in part by the National Science Foundation un roximately uncorrelated entries. Analogous to the i..d.
Grants CCR-9875805 and CCR-0113385. This paper was presented in rP lized istical del the vi | ch | .
at the 40th Annual Allerton Conference on Communication, Control, ard€alized statistical model, the virtual channel matrix captures
Computing, IL, October 2—4, 2002. the essential degrees of freedom in correlated MIMO channels
Z. Hong, K. Liu, and A. M. Sayeed are with the Department of Electrica}jg the powers in its nonvanishing uncorrelated entries. Thus,
and Computer Engineering, University of Wisconsin-Madison, Madlsonh . | ch | . id ful | f
WI 53706 USA (e-mail: zhihonghong@ieee.org; kliu@cae.wisc.ed&, eV'_rtua c a.'nne representation prO\{I es apoweru.too or
akbar@dune.ece.wisc.edu). studying the impact of correlated fading on modulation and
R. W. Heath, Jr., is with the Department of Electrical and Computer E’(‘,’oding for MIMO channels. It also provides a natural frame-
gineering, The University of Texas at Austin, Austin, TX 78712-1804 USA K f bini b f . id f .
(e-mail: rheath@ece. utexas.edu). work for combining beamforming ideas from array processing

Digital Object Identifier 10.1109/JSAC.2003.810361 with space—time coding techniques.

0733-8716/03$17.00 © 2003 IEEE



HONG et al: SPATIAL MULTIPLEXING IN CORRELATED FADING VIA THE VIRTUAL CHANNEL REPRESENTATION 857

Our approach to spatial multiplexing in correlated MIMO [SCATTERERS\‘\

channels is motivated by the analysis of the pairwise-errt

probability (PEP) in the virtual channel representation. As w

will see, the key problem in correlated channels is that son _q

particular codeword error vectors may lie in the channel nu

space thereby increasing the PEP. The virtual channel matr 74

due to its uncorrelated nonvanishing entries, clearly expos

the interaction between the signal space and the channel t

causes such degradation in spatial multiplexing performanc_°q

Based on our analysis, precoding the transmitted codewor

emerges as a simple and effective way for dealing with COTRANSMITTER RECEIVER

related fading. When the channel statistics are unknown aRRAY SPATIAL MULTIPATH CHANNEL ARRAY

the transmitter, precoding vianitary matrices is proposed for g, 1. A schematic illustrating the virtual representation of a physical

rotating the transmitted codewords to avoid collisions betweseattering environment. The virtual representation corresponds to beamforming

the codeword error vectors and the channel null space. WHgfied directions determined by the resolution of the arrays.

channel statistics are known at the transmitter, the structure of

nonvanishing entries in the virtual channel correlation matrixix, ® for Kronecker product [14]JA[|2 = tr(AA*) for the

is exploited to develop precoding techniques m@nunitary Frobenius norm, and’, to denote expectation with respect to

matrices thatrotate and scalethe codeword vectors to avoidrandom variable when it is not clear from the context. We use

collisions with the channel null space, as well as to matdjoldface lowercase letters to denote vectors and boldface upper-

transmitted signal power to the relative channel power gase to denote matrices], is thekth element of the vector

different spatial dimensions. while [S]x; is the element in théth row and/th column of the
Precoding techniques have been investigated by severalmetrix S.

searchers in related contexts. Precoding to rotate the signal con-

stellation and improve robustness of spatial multiplexing is con- II. VIRTUAL CHANNEL REPRESENTATION

S|dered_ in[10] fore}polanzed Cha”f.‘e' andin [11}inthe PTESENCe \e consider a narrowband MIMO system with, transmit
of spatial correlation for the special case of two transmit and . .
. . ._antennas anaV, receive antennas. In the absence of noise,
two receive antennas. Both above schemes consider diagoha ) . : .
; . e havey = Hs, wheres is the M;-dimensional transmitted
precoding matrices and both assume knowledge of the (nondi- . . . . .
. ) ? . vector,y is the M,.-dimensional received vector, ai is the
agonal) channel correlation matrix at the transmitter. Linear pre-

coding is considered in [12] for space—time coded system wi

known fading correlations and in [13] for transmit diversity Witrl%cattering environment assumes that the elemerfark i.i.d

random-fa}dlng channels. The key advantage of our prEECOdI&SJrnplex Gaussian random variables. However, the elements of

schemes is due to the uncorrelated nature of the virtual charg;lel
r -

. ) - L are correlated in realistic environments and the statistigk of
matrix: the virtual channel correlation matrix is diagonal rega : . s
. i .are dictated by the scattering and array characteristics, such as
less of the correlation structure of the original channel matrixX

As we will see, this greatly simplifies PEP analysis and also q%ngular spreads of scattering clusters and antenna spacing [7],

fers direct insights for matching signaling schemes to chan e] In this paper, we use the virtual channel representation in-
9 99 9 roduced in [8] to capture the statistical structure of correlated

Cffociiely combine beamforming ideas with space. o codifNd channels mposed by clustered scattering environmens
via the virtual channel representation A schemfamc |Ilustrat.|ng the wrtyal ch.annel re_presentanon is

. . ' . shown in Fig. 1. Consider one-dimensional uniform linear ar-
.The paper |s_organ|zed as follows. In Section 1, we pr%\ys (ULASs) of antennas at both the transmitter and receiver
vide a brief review of the virtual channel representation. g, simplicity and assume that far-field assumptions apply. The

sect|on lll, we provide a general framework. for PEP analys annel matrix can then be described via the array steering and
in correlated MIMO channels based on the virtual channel reps, ponse vectors given by

resentation. Section IV focuses on the performance of spatiaf

» X M; channel matrix coupling the transmit and receive an-
ennas. The idealized statistical model corresponding to a rich

multiplexing techniques in correlated channels and discusses _iomp _jen(M,—1)82]T
H t H aT(T): [1 JWT...../BJ’,r t T]
the mechanisms underlying the degradation of performance VM,
in such channels. Motivated by the analysis in Sections Il 1 s _janMo—1)05] "
and 1V, precoding techniques are proposed in Section V that ar (fr) = r [176 PR L eT I “} @)

effectively account for correlated fading depending on whether

channel statistics are known at the transmitter or not. Numerigaheref represents the angle variable and is related to the phys-

results illustrating the performance of precoding techniques acal anglep (measured with respect to the horizontal axis as

presented in Section VI. Section VIl presents some concludiillystrated in Fig. 1) a® = dsin(¢)/A, where) is the wave-

remarks. length of propagation and is the antenna spacing. The vector
The following notation is used throughout the paper. Wefusear (6 g) represents the signal response at the receiver array due

for conjugate T for transpose!? for conjugate transpose(tf to a point source in the directiopr. Similarly, a;(61) repre-

for the trace operator, vég for stacking columns of a ma- sents the array weights needed to transmit a beam focused in the
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direction of . Note that the steering and response vectors irsing the identity ve(ABC) = [CT @ A]vedB). LetR =
(1) are periodic irf with period 1. E(hhH) denote the correlation matrix &f andR.y- the corre-

Parameterized physical models repreddntia signal prop- lation matrix ofhy = veqHy ). R andR.y are related by
agation over multiple paths (see, e.g., [8] and [9])

. R =[A} ® Ag]Ry [A7 ® Af]

H M, M,
H-= ;ﬁza}z (Or,) a7 (07,1) 2 Y Y ok, {a*T (07.,) © ar (Or.m)
- m=1n=1
wheref; is the fading gainfr ; represents the angle of arrival : [a? (67,n) ® afy (HR,m)] (6)

(AoA), andfr; represents the angle of departure (AoD) asso-

ciated with thth path. The virtual representation, on the othe¥hereor, . = E|[Hy],,.|* are the diagonal entries @ty .
hand, exploits the finite dimensionality of the signal spaie Note that due to the approximately uncorrelated nature of the
use spatial beams ifixed, virtual directions (as illustrated in €lements ofHy, Ry is approximately diagonal. We assume
Fig. 1) to capture the effect of the scattering environment [gv t0 be exactly diagonal in this pagerfurthermore Ry

The virtual channel representation can be expressed as may have some zero elements on the diagonal corresponding
to the vanishing elements Hy due to clustered scattering.

M, M, We note thatR and Ry are unitarily equivalent since the
H=> Y [Hy],,ar(0rm)af (0r,) = AgHyAf  Kronecker product of two unitary matrices is also unitary.
m=1n=1 Thus, (6) is an eigendecompositionBfand (5) is the corre-

) sponding Karhunen-Loeve-like representation for each channel
realization. Therefore, the nonvanishing diagonal elements of
Ry that capture the power in the nonvanishing elementd pf

also determine the eigenvalueskf As we will see later, this

is a very powerful property of the virtual channel matrix from
the viewpoint of PEP calculations.

Ar = [aT(HT,l),. .. ,aT(HT,]\,[i)] (1\41L X Mf) are full-rank
matrices defined by the fixed virtual anglg#r ., } and{fr_... }.
Uniform sampling of in the principal periodf € [—0.5,0.5))
is a natural choice for virtual spatial angles

m—1 n—1 .
Or.m = M 0.5, 01,n = M 0.5 (4) . PEPIN SPATIAL MULTIPLEXING SYSTEMS

In this section, we review spatial multiplexing and derive the
PEP for spatial multiplexing in correlated channels via the vir-
tual representation.

which yields unitary matriceA p andA . Ag isanM,. x M,
discrete Fourier transform (DFT) matrix aid; is anM; x M;
DFT matrix. ThereforeHy  is unitarily equivalent toH and
captures all channel information. A Review of Spatial Multiplexing

Realistic propagation environments can be modeled via a Su-
perposition of scattering clusters with limited angular spreadsSpatial multiplexing is a modulation technique for MIMO
(see, e.g., [8] and [15]). The virtual channel matkl, pro- Communication systems in which independent streams of data
vides an intuitively appealing “imaging” representation for sucre multiplexed in space and subsequently demultiplexed at the
environments: different clusters correspond to different nonvé&ceiver [1], [6]. During every discrete-time symbol period, the
nishing submatrices dfly-. Furthermore, it is shown in [8] that €ncoder multiplexes/, complex symbol{[s], } 22" from a
the nonvanishing elements Bf;- are approximately uncorre- unit energy constellation to form a complex vector codeveord
lated under the usual assumption of uncorrelated physical scete components of this vector codeword are modulated, up-con-
tering. The virtual channel matrix clearly reveals the capaci¥grted and launched into the channel.
and diversity afforded by a given scattering environment. The Neglecting symbol timing errors and frequency offsets, the
capacity multiplier provided by a cluster is determined by th&, x 1 received signal vector after matched filtering and sam-
size/rank of the corresponding submatrix and depends on fH&g can be written as
number of virtual angles that lie within the angular spread of
the cluster. The number of nonvanishing entries in each subma- y = [P Hs+v 7)
trix determines the diversity afforded by the cluster and depends M,
on the nature of scattering within the cluster.

A valuable representation of (3) is obtained by stacking t
columns ofH as

fuherev is the vector realization of i.i.d. complex circularly

symmetric additive white Gaussian noise (AWGN) processes

with distribution A/ (0, (N, )I,,, ), wherel; denotes the iden-

h =veqH) = [A% ® Ay vec(Hy) tity matrix pf dimensionM,. andp is the total signal power. The'
M. M, channeH is assumed to be perfectly known at the receiver (via

_ * training symbols, e.g.,) butnknown to the transmitteAs will
_E E H Orn) ® Or.m 5 o) X -
vl 87 (Or:n) © ar (Or.m) ®) become clearer, limited information about statisticsof H at

m=1n=1

2The approximation gets better with larger number of antennas and/or large
1Due to finite number of antennas and, thus, finite array apertures. array apertures [8].
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the transmitter can be fruitfully exploited. We assume the use SV s y Yy Sy Yy
: N - — At H —( Afl—  —=Hy —
the maximum-likelihood (ML) decoder at the receiver. W R
Vy
B. Pairwise-Error Probability (PEP) al b)

For random C_hannels the metric of ime.reSt is typically th&g. 2. signaling in the virtual channel. (a) System depiction wAth as
average probability of error. Exact calculation of the symbol @r precoder andA r as a postcodesy is the multiplexed symbol vector.

bit-error probability for spatial multiplexing systems, howevef?) Equivalent representation of (). directly interacts witH. .
is difficult [11], [16]. One solution commonly employed [17]

is to upper bound the desired error probability using the unigfhereyyv = AZy and similarly forvy,. The above equa-
bound and the PEP. tion says that at the transmitter, we first apply a DRI to

Let P(s(™ — s(*)|H) denote the probability that™ is the transmitted codewords, before launching them onto the
decoded at the receiver erroneouslysés for a givenH. Let channel and at the receiver, we first apply a DEAT)) to the
the error vectoe(™*) — s(m) _g(¥) and define the error corre- received vectoy before decodingy . Thus, (11) corresponds to
lation matrix ofe(™*) asR(™k) = e(m-ke(mkH ysingthe Signaling and reception directly in the virtual (Fourier) domain
Chernoff boundQ(z) < e=*"/2 to upper bound the PEP and@s illustrated in Fig. 2. Our subsequent development is in the
the fact thah has complex normal distribution with zero meargontextof (11). Inthis context, the transmit and receive antennas

and covarianc®, it can be shown that [18] correspond to the virtual transmit and receive elements (corre-
sponding to beams in virtual directions) and the mafyf%**)*
P (S(m) —>S(k)) =FEnu (P (s(m) — s IH)) becomes the codeword error correlation matRX'(-*)) corre-
p —1 sponding to the actual transmitted vectors [not their DFT as in
<|Lus I{(Rﬁ”*” L/) 10)].
< M,J\[t+4MtNO & 1ar, (10)]

(8) D. Rank and Eigenvalue Characterization

This is strictly true only folR nonsingular. As we pointed o(R, According to the rank and determinant criteria [3], [20], the
is often singular or nearly singular due to clustered scattering. &or rate performance is a function of the rank and the product
avoid difficulties with the singular distribution, we can procee@f the eigenvalues of (™*). The diversity advantage is deter-
with the above derivation assuming tHat= R. + I and then mined by the rank which we can bound as

can lete go to zero to arrive at the result in (8). A more formal _ (k) ] (k)
derivation of (8) is presented in [16] and [19]. R=rank (C ’ ) <min (rank (Ry), rank (Q ’ ®1Mr))
Substituting (6) into (8) using the virtual representation, fol- =min (rank (Ry-) , M,.) 12)
lowing the identity]I + AB| = I+ BA| and using the dis- ) _ o
tributive property of the Kronecker product, we have 5'”CeQ(m’k) is a rank-1 matrix. In realistic channels corre-
sponding to clustered scattering, is not diagonal buR.y is
P(s(m) . s(k)) still diagonal due to the properties of the virtual representation
_1 [8]. Note that the maximum rank dRy is M, M, and, thus,
<|Tyar, + —2—Ry [A?RW’C)*A*T ® IM,] the absence of coding across time limits spatial multiplexing to
’ 4M¢N, ’ a diversity advantage (defined as the minimum rank of all pos-
R-1 0 o) sible C(™-k)) that is at most equal td/,. Space—time coding
=] <1 t M (C(m’ ))> (9)  can increase the rank @(™*) to M, thereby restoring the
r=0 e diversity loss. In addition to the rank @("*), the nature of
where Cmk)  — RV[A§R(’"7’“)*A} ® In], R = scattering can also reduce the diversity advantage. This is be-
rank C("*)) and ), denotes theth eigenvalue of2("-), cause some diagonal elementdaf may be zero or near-zero
depending on the scattering geometry and antenna spacing [8].
C. Signaling in the Virtual Channel However, due to the inherent difference in the rankRgf and

m,k L. .
Define the DFT of the codeword error correlation matrix asQ"™" ® I,, Ry could have many vanishing (or small) di
agonal entries and still yield the maximum diversity advantage

QR =ATR(M™M* Az = ATe(mPe(m kT A%, (M,). It all depends on the interaction betweBR- (channel
=q ™k g(m R H (10) statistics) and(™*) @ I, (code error properties) in (9).
o . Let Ry = diag{Rv(0),Ry(1),...,Ry(M; — 1)} be the
whichisrank-1and"™*) = AZe*"™*) is the DFT ofthe error giagonal decomposition @t in terms of M, x M, matrices,
vectore("™*). From (9), we see that the PEP is governed by tg () = Efhy (n)h¥ (n)], wherehy (n) is thenth column of
interaction betweeR- andQ("*) @ I, . The virtual channel Hy.
representation, thus, suggests the DFT as a natural precodingnhegrem 1:Explicit characterization of eigenvalues of
matrix so that the codewords directly interact with the scatterigg(m.k) The A1, eigenvalues o€ (™*) are given by
characteristics captured B¥y-. That is, we consider transmitted o
) - — )
signals of the forns = Arsy so that the channel (7) becomes/\r (C(mv’“)) _ Z Hq(m’k)]n’ Ry (n)],,
n=0

— /" Hoso
Yv = ag Hvsv H vy (11) r=0,...,M,—1. (13)
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Proof: We suppress the superscript (k) for simplicity Exploiting the diagonal nature &, and the structure of the
of notation. First note that fo = qq’, Ry [Q ® I;,] = codeword error vectors in spatial multiplexing, we can obtain
Ry [q®1yy, ][a” @14, ]. Furthermore, the nonvanishing eigenan exact expression for the diversity advantage that holds in a
values of a product of matrices are not changed by changing tragiety of situations in which the same constellation is used at

order of matrices. Now all virtual transmit antennas.
= Theorem 2:Exact diversity advantage. For spatial multi-
[q ® IMT]RV [a ®In,] plexing using the same constellation at each virtual transmit
= [[a)¢Iar, . [aliIns, . - - - [alhy, —1D0s, ] antenna, the minimum rank @("*) over¢ satisfies
[[q]ORV(O)v [q]lRV(l)v ceey min rank(c("%’“))
[alar, -1 Rv (M, = )] arm e
M, —1 = min rank (RV [Q<m’k) ® IMT})
=3 llala[*Ry-(n) (14) amee
n=0 M, -1
where note thab/, x M, matricesRy (n) in the last equality =01, -1 ; d ([RV]"M”F“”M“ > 6)
are diagonal matrices. Thus, the eigenvalugg@f-*) are given (16)
by the diagonal entries of the matrix in (14) which are given in
(13). ] wherel(-) is the indicator function and is a threshold value

The above theorem has a very insightful interpretation: tfi@r determining the essentially nonvanishing entrieRef.
rth eigenvalue is equal to a weighted sum of the powers of all Proof: Firstnote thaRy [Q®1Ix,] = Ry [aq” @I, ] =
virtual transmit antennas coupled to ti# virtual receive an- Rv[a © Ing]l@” ® In,] by the distributive property
tenna (via therth row of Hy/). The weighting is given by the Of Kronecker products. Thus, the rank dof is deter-
magnitude squares of the error vector componefiig],.|2}, Mined by the rank ofRy[q ® In,]. Recall thatRy =
corresponding to different virtual transmit antennas. Note th@@d{Rv (0), Rv(1),..., Ry (M; — 1)}. Thus, we have
therth eigenvalue may be zero if eith@®y (n)],- - = 0 for all _

. . : Ry [q® Iy, ] =

n (rth row of Hy is zero) or ifq,, = 0 for those values of, for T
which[Ry (n)],-, # 0. Rearranging the order of nonzero eigen- [aloRv (0), [aiRy (1), .. [a]ar,—1 Ry (M: = )] . (17)
values, the PEP in (9) can be bounded at high signal-to-noisarly, the worst set of error vectors are of the form in which

ratios (SNRs) as q is nonzero in only one element (unit error vector). In the case
/Ry —R that the same constellation is used on all virtual antennas, all

p A s such error vectors are possible. Supposedhatonly nonzero

PEP (q,Ry) < <4MtNo> 1_[0 A (a, RV)] in thenth element. From (17), the rank Bfy-[q @1, ] for such

an error vector is determined by the nonvanishing diagonal ele-
and. thus. the diversity aain i® and the codin é\ilr?)is ments inRy (n) which is exactly the expression corresponding
] ' y 9 99 to the indexn in (16). Thus, the minimum rank corresponds

R—1 , 1/R . . .
[[T,—o Ar(a, Ry)]'/. Note that both the diversity and COdm?Ito Ry (n) with the smallest number of nonvanishing elements.

gains depend on both the error codeword properties, as well@s,” ~ /. . ) .
L X - ANd this is achievable since all such unit error vectors are pos-
channel characteristics as evident from Theorem 1. For givel S o
Sible. This yields the equality in (16). O

Ry, to maximize diversity gain we would like to have as many . ; - .
o ; Theorem (16) gives a convenient and explicit expression for
elements of error vectokg € £ be nonvanishing for which the . . . )
. : the worst-case diversity advantage as a function of the scattering
correspondindgRy (n)]..,- is nonzero, wheré€ denotes the set . . . ; )
. ’ o . environment. The actual diversity gain can be larger depending
of all possible codeword error vectors. To maximize codmg . .
o ”» . n the interaction between the channel and the error codeword
gain, in addition, we would like eacliq],,| to be as large as : o A
ossible over the entire sét vectors. The proof of_ the theorem. yields qseful |nS|ght.s in this
P regard. In particular, it shows that if tah virtual transmit an-
tenna is not coupled at all to the receiverBy~(n) = 0 (the
nth column ofHy is identically zero)—no symbols should be
In this section, we use the PEP analysis in the previous sé@nsmitted on that virtual transmit antenna; thésig,, should
tion to get further insight into the performance of spatial multbe zero. This is because those transmissions are not observable
plexing in correlated channels. at the receiver at all. This is important in practice since some of
Achieving the upper bound in (12) assumes that column spabe virtual transmit elements might be weakly coupled to the re-
of Q(mF) g I, is not contained in the null-space ®. ceivers and should not be used for transmission. In such cases,
However, due to the unconstrained nature (relative to genedata should only be multiplexed on the virtual transmit antennas
space—time coding) of codeword error vectors in spatial mulgerresponding to relatively strong columnsR{,. As our nu-
plexing and due to the vanishing diagonal entrieRgfin clus- merical results demonstrate, accounting for such weakly cou-
tered scattering, full intersection between the column spacepdéd virtual transmit antennas can result in significant improve-
Q"% ®1,,, and the range space Bfi- cannot be guaranteed.mentin performance. A related important insight is to avoid unit
This results in loss of diversity gain which we quantify in thigrror codeword vectors. Unfortunately, since the symbols at dif-
section. ferent virtual transmit antennas are independent in spatial mul-

IV. SPATIAL MULTIPLEXING IN THE VIRTUAL CHANNEL
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tiplexing, all such error vectors are possible. As we discussénror vectors. We define @bust unitary precodeas one that
the next section, applying a precoding transform to the trarsatisfies the conditions in the following definitions. Lefnot
mitted vectors is an effective way to avoid such error vectorse confused with thein Theorem 2) be a design parameter.
More importantly, since we cannot introduce dependencies be-« Define J(W) = mingeg no....rr,—1 |[Wdl.|. A robust
tween transmitted symbols in spatial multiplexing, such a pre-  ynitary precodersatisfiesJ(W) > e forn = 0,1,...,
coding approach is the only way of avoiding unit error codeword A7, — 1 and for allq € &, for somee > 0.

vectors.  An optimal robust unitary precodes one that maximizes

the threshold over the space of candidate precoders; that
V. UNITARY AND NONUNITARY PRECODING is

In this section, we leverage the insights from PEP analysis
to propose unitary and nonunitary precoding that improve the W, = arg max | arg Sl:P[J(W) 2 el (19)
robustness of spatial multiplexing in correlated channels.
An optimal precoder may not be unique.
A. Unknown Channel Statistics—Unitary Precoding It is clear from Theorem 2 that a robust unitary precoder en-

Our PEP analysis shows that the key source of performartd€S that all elements & q are sufficiently nonvanishing for

degradation is the existence of unit error vectors and the vfﬁl—q € £. Then, from (13) in Theorem 1, we see that all nonva-

ishing diagonal entries dR due to clustered scattering. Fur_nishing elements iRy, contribute to the eigenvalues and, thus,
ntribute to the diversity gain by maximizing the rank. [Note

thermore, Ry may not be available at the transmitter. In suca_za s laced with 4 3) with di .
cases, it is of interest to develop techniques that minimize t Lq is replaced withWgq in (13) with precoding.] An “op-

occurrence of unit error vectors and also make spatial mu|tt|ir_n|um precoder.lrjrlwakes the. m.OdUIrL:S of all _eledmer:ctsl'cﬂ £ |
plexing robust to the vanishing diagonal elementiRgf. as large as possible to maximize the magnitude of eigenvalues

Designing general space—time coding schemes that are rolS%llg)' This contributes to both the diversity gain and coding

to correlated channels is an interesting open problem. In 5[95-'”'

tial multiplexing, since the transmitted vectors are not spatiall Flgdmg ‘Zn optur‘r]wum rol;ust Lflnltary precoder Is difficult ﬁlnceh
coded, we are left with the option of applying a precoding trans- °© Jepends on the NUMDET 0 tr§n§m|t_ ant_enr)qs, aswe asthe
form to the transmitted vectors. In this paper, we focus on lineSpecific type of constellation. Optimization is difficult since ro-
precoding transforms. L&V be aM, x M, precoding matrix bust unitary precoders satisfy a max—min criterion, where both

that is applied to the output of the spatial multiplexer. Insteame maximum and minimum are effectively taken over discrete
of transmitting codewordy, we transmifWsy, in Fig. 2. The spaces. However, a unitaliy’ can be represented using a re-
receiver observes duced set of coefficients. We use this fact to propose two dif-

ferent unitary precoders.

_ /P Diagonal Precoder: The simplest class of unitary matrices
V= \ M, HyWsy +vv. (18) take the form

The goal of this section is to fin&V, without knowledge oRy W = diag{l, el . edfma } ) (20)
or Hy, to improve the error-rate performance of the communi-
cation link. Clearly, WH'W = I,,, by design and there are onl\; — 1

Due to lack of knowledge dRy-, we chooséV to be unitary free parameters since we can assume the first coefficient is one
since it does not change the spatial distribution of power. A simithout loss of generality. However, this precoder does not solve
ilar approach has been taken in [10], in which a precoding mattixe problem of avoiding unit error codeword vectors. In con-
is used to improve the robustness of spatial multiplexing syjsinction with a DFT precoder, though, this simple precoder may
tems in polarization channels. Their precoder assumes knotw effective. Suppose that we transmit signals of the form
edge of a nondiagon®.y,, parameterized by the cross-polarWA rsy.. From (7) and (18), the channel equation in this case
ization discrimination, but otherwise serves to precondition thecomesgyy = HVA%’WATSV + vy-. The intuition behind
transmitted signal vectors. In our case, the precoder is desigtigid precoder is that the matri&Z WA r (which is analogous
to be robust to the nonvanishing diagonal entrieRef. to an all pass filter) will smear the error vectors over all frequen-

From the structure of the virtual representation, a DFT preies (virtual angles) so that all elementsfdf WA .q [which
coder may sound tempting; thatis= sy, [we removethelrin  replacesq in (13) in this case] will be nonvanishing for both
Fig. 2(a)] so thayy = Hy AXsy +vy-. In this case, the trans- unit error vectors, as well as constant error vectors (which cause
mitted codewords undergo a DRAZ due to the channel propa-problems in a DFT precoder).
gation before encounteriridy . However, such a DFT precoder For reasonableV/;, we propose the following exhaustive
is not attractive since it maps a constant error vector of the folgearch technique.

[e,c,...,c]T into the unit vectof1,0,...,0]" which is detri- Search 1: Uniformly quantize the phase values 4o =
mental to the PEP from Theorem 2. However, with some modi2zn/N})—' and letW be the set ofv*:~! candidate pre-
fication a DFT precoder may be useful, as elaborated below.coding matrices. Choose ttW € W such that (19) is satisfied.

From the proof of Theorem 2, diversity advantage is compro- We consider an example of a spatial multiplexing system with
mised when there are cancellations in the pro®uctq®1I,,,). QPSK symbols and/, = M, = 2. The optimal precoding ma-
Furthermore, such cancellations are particularly acute for utriix is found and the simulation results are shown in Fig. 4 in
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Section VI, where we show significant improvements with pre £

coding. Given the performance improvements, a natural que .-~ §

tion is whether a nondiagonal unita¥y can even further im- m," g1

prove performance. ‘ !
General Unitary Precoder:Consider a general unitary pre- . P

coding matrixW. Since the criterion in (19) does not readily |

admit a closed form solution, a numerical search is needed. C

approach is to characterize a unitary matrix using a canonic _. @ b o

representation, say using the Givens rotations, as in [11]. We . . . -

then quantize the angles of the rotations to enumerate a fan&ﬂg{ fé”aﬁoen?”g)eﬂ;ﬁtgfﬁ ;ﬁiigﬁﬂg? C‘)’fniﬁﬁﬁﬁfaf’yf g;:fg;':g' %) original error

of candidate precoding matrices and optimize. For large num-

bers of antennas this becomes computationally intensive due to ) ) ) )

the number of parameters that need to be quantized. In this casd "€ Use of unitary or nonunitary precoding can be motivated

we propose the following design based on a random search.Py considering the geometry of signal constellations and

Search 2: Generate a set of random complei x M, ma- chgnn_el statistics. _An (_axample o_f signal error vector constel-

trices from the complex Gaussian distribution. Vetbe the set lation is illustrated in Fig. 3(a). SincHy may be sparse, the

of orthogonal matrices constructed from the QR decompositi§Hannel matrix has a certain “null space”, captured by the

of the random matrices [21]. Choose #& € W such that (19) vanishing diagonal elements &,  in the context of PEP. If

is satisfied. an error vector lies in this channel null space, it cannot be
Clearly, Search 2 is not guaranteed to be optimal. We findetected at the receiver and significaptly compro.mises the PEP.

however, that it is relatively easy to find a go®d as we will In order to improve performance, unitary precoding rotates the

show in Section VI error vector constellation to some angle to avoid error vectors
(particularly unit error vectors) lying in the channel null space.
B. Known Channel Statistics—Nonunitary Precoding This corresponds to making as many elementsjah (23)

r{é(fnvanishing as possible over ajl € £. This contributes

statistics and structure at the transmitter—the precoding ap_marlly to diversity gain and some to coding gaun. W'th.o ut
owledge of channel statistics at the transmitter, unitary

trix is designed to make the system robust to channel structu . . . S
coding can provide robust performance since it tries to

in clustered scattering environments. We now present a gen imize th acti f t o the ch | null
nonunitary precoding design which can incorporate knowled nimize the projection of error vectors onto the channel nu
ace. When the transmitter has knowledg®¢f, nonunitary

of channel structure at the transmitter. The second-order StH¢ . L
tistics of the channel, captured W, typically change more precoding not only prevents an error vector from lying in the

slowly than the channel realizations and, thus, it may be pc%C 1annel nul fpace, tbuihlt alzo mc:eases the prOje_ctlpnd_of all
sible to conveyR,- back to the transmitter. e error vectors onto the channel range space via judicious

; : : : choice of{p,, }. This corresponds to making, |[q]..|* as large
Consider a nonunitary precoding matrix as possible in (23) over aff € £. This increases the coding
W = DW = diag {\/po--.,vPa,—1} W (21) gain compared with unitary precoding. A schematic illustrating
) ) . ) ) . the effects of unitary and nonunitary precoding is shown in
where W is a unitary precoding matrix (as in the previougig 3(p) and (c). A similar channel geometry explanation was
Seg}i‘iﬁ‘) andp, is chosen to satisfy the power constrainggg given in [11], where only a particular?2 system with

2n—o Pn= M. Generally,ifp, # 1forn =0,....M; =1, giagonal precoding was considered.

W is a nonunitary matrix. Whe = I, W becomes 1o fyrther convey the intuition of unitary and nonuni-

unitary.D could be interpreted as a scaling or power aIIocatiqgry precoding, consider a concrete example of a
matrix. Since we have the knowledgeRf- at the transmitter, 4 5 4 Hy = [hy(1) hy(2) hy(3) hy(4)] of the

instead of the robustness criterion, we se@k ahat minimizes form
the maximum PEP (9) for all possible error vectors. Deand

W denote sets of candidal@ and W matrices, respectively.

We define an optimal nonunitary precoding matrix as one that
minimizes the maximum PEP of codeword erfoW q

(Do, W)

Robust precoders do not exploit knowledge of the chan

Hy = (24)

o X X X
o o o X
X X X X

p -1 where- stands for nonvanishing elements with variance 0.02 and
mRV [Q ® Ing,] x stands for nonvanishing elements with unit variance. As we
(22) mentioned earlier, nonvanishing element&hf correspond to
the nature of scattering. In this example,]; is weakly sup-
where nowQ = DWqq?WHD = Dgq”D. The eigen- ported byhy (1) due to low power irhy (1). Similarly, [sy-]3,
values in (13) now become that corresponds to the third-virtual transmit angle hpd3),
M,—1 only couples with one virtual receive angle and, thus, there is
A (C) = Z pulldl, 2 Ry (n)],. .. (23) ho divgrs[ty gain for thi_s s_ymbol. Therefore, we would expect
= ’ the reliability of transmission dky-]; and[sy|3 to be poor. In

=arg  min max

Iasar, +
DeD,WeW qeé Tt
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. . 0
order to improve performance, we could spread the inform: °

~
AT N w
~

tion transmitted byfsy]; and[sy]; over other transmit angles — g g :

(corresponding tday (2) and hy (4) with more power). Uni-

tary precoding is designed to achieve this goal. On the oth -
hand,[sy/]; couples with receivers so weakly that it may not be§
used for transmission at all. Therefore, instead of equally di%
tributing transmit power among all the virtual transmit angle%

it is natural to allocate more transmit power to the more relig 152

able transmit angles if suchpriori information is available at % 1

the transmitter. The diagonal weighting matfxin nonunitary g - 2!

precoding is designed to achieve this goal. It is also clear thatg -- R§ .

the extreme case of a fully populatéli, which is analogous ©10” o R(D) b SEHHE e |

to ani.i.d. channel [8], neither unitary precoding nor nonunitar + g%éﬁ?\?mﬁmv PRECODING RS

precoding would be needed. \.\\ T
A numerical search is generally needed to ob®¥in When - , ‘ ‘ ‘ S

the dimension is large, the search ¥ that jointly optimizes 0 5 10 15 20 25

W andD may be very computationally intensive. An alterna- SNR (dB)

tive suboptimal solution is the fOIIO\_ng' . Fig. 4. No precoding versus diagonal precoding as a function of the number
Search 3:Let W be an optimal robust unitary pre-of nonvanishing elements @&. .

coder obtained, for example, using Search 1 or Search 2 in

Section V-A. LetD denote the space d@ matrices obtained, allocate any power to this virtual antenna. This problem can be

for example, by quantization and normalization. Choosdlhe alleviated by applying a technique known as stochastic antenna

that satisfies (22) for the giveW and knownRy . subset selection [24]. The idea is to allow only a subset of
Using aW that is an optimal robust precoder has a numbey, of the M, virtual angles to be used. The size &f can

transmission is still robust. Second, there are fewer parametggsformed over candidate subset. Alternatively, the number and

to optimize inD than inW. Since the channel statistics changg,cations of nonzerg,, in (26) can be used to determine the

overtime on a relative slower time scale than changes in changefe yirtyal transmit antennas and then Search 3 can be used
realizations, the optimization dD can be done in real-time. to find D for these antennas.

We now give another optimization criterion fBr based on mu-
tual information? Assume that the codewords are complex
Gaussian distributedy[sy s] = 1, (the transmitted signal is . _ _ o
now DWsy, and E[DWsysZWHDH] = D?). Therefore, A. Unitary Precoding Without Channel Statistics

it can be shown using Jensen’s and Hadamard inequalities, then this experiment, we consider a spatial multiplexing system

VI. NUMERICAL RESULTS

average mutual information betwegrands is [2] with quaternary phase-shift keying (QPSK) symbols and
M, = M, = 2. We consider the performance with and without
I(y,s) =FEu, logdet (IMi + ﬁH?IHVDZ) precoding as a function of the number of nonzero diagonal ele-
Mot %o ]rfnentS ofRy. VRV(la den;t&?{v with k}nt;:zzero glerr;ents zR"’},
Pn =1,2,3,4, R}, = diag{1,0,0,0}, R? = diag{1,1,0,0},
<) log (H ;) @9 B3 diag{1.1,1,0}, R = diagl1,1,1,1}. We used

100000 Monte Carlo simulations to estimate the average
wheres, = M;N,/(vnp), vn = E[h{}(n)hy(n)]. The op- symbol-error rate for eacRy .
timal D then maximizes (25) under the power constraint. This First consider the case of no precoding as illustrated in Fig. 4.
is a standard waterfilling problem [23] and the solutionis  The symbol-error rate is about 0.5 fR}. andR2. since the
+ symbol stream transmitted from the second virtual antenna is
o= (= 0n) (26) |ost in the null-space of the channel. For the casBf, there

here(x)* denotes the positive part efandy. is chosen so that is a first-order diversity, since the minimum rank is one as fol-

Zﬁi&l(u —on)t = M,. lows from The_orem 2. FinalyRy = I_4 cor_requnds toa ric_:h
channel and yields a second-order diversity gain and maximum
C. Virtual Transmit Antenna Selection coding gain.

The mutual information based power allocation procedure Ng)tw W§ shcth hO.W even dlago?tal P recodl_ng |mprct)vethhe di
in (26) explicitly illustrates an important point that is |mpI|C|tV_e_rSI y advantage in sparse-scatlering environments. by quan
. . . : izing the angles withV = 100, we used Search 1 to find the
in (22). In some cases, a particular virtual transmit angle, 2. ; : . T

. . - . ~tollowing optimal diagonal precoding matrix with= 0.6299
will contribute a negligible amount of power to the receiver

[e.g., the first virtual antenna in (24)] making this virtual W = diag{1, %9}, (27)

angleinfeasible—the power budget may not be sufficient to The performance improvement obtained using this precoder

3In[22], itis argued that maximizing mutual information also minimizes PERS illustrated in Fig. 4 and compared with the case of no pre-
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Fig. 5. Diagonal, general unitary, and nonunitary precoding as a functionfeiy. 6. Effects of unitary and nonunitary precoding or 2 virtual channels
the number of nonvanishing elementsR, . with two nonzero elements.

coding. Even with a single nonzero element, as predicted Biitary precoding are identical since the optirialn this case
Theorem 2, there is a first-order diversity gain since both datay.

streams get coupled to the nonvanishjif ], ; due to rota-

tic_)n. As Ry fills out with 2, 3 and 4 nonzero diagonal_ enC. Impact of Precoding on Degenerate Virtual Channels
tries there is a second-order diversity advantage as predicted bV\/e have shown that precoding can improve the performance
Theorem 2. Since each additional nonzero element increases tp

received power, there is an increase in coding gain as redicge patial multiplexing in correlated channels. Now we use an
by Theorgm 1 ' 99 P xample to explicitly illustrate the diversity and coding advan-

Now consider a general unitary precoder. Using Searchtage due to precoding using Theorem 1 and 2. We use three dif-
we searched over 10 000 randonx 2 matrices and found the ferent possible X 2 representations fdy - row degenerate,

. ) . ) column degenerate, and diagonal
following optimal precoding matrix witlh = 0.6488: g ' 9

. ) 0 : x 0
[ —0.2436 — 0.7934i  0.4194 + 0.3679i H = {X X} JH2 = [X } JHE = [ } . (29)
W= | 05194 0.2037i —0.8167 + 0.14781} (28) 00 x 0 0 x

From Theorem 1, we expect that there is a marginal codingFor Hy,, Theorem 2 shows that the minimum diversity
gain compared with precoder (27) due to the marginal differenggvantage of this system is one and the only eigenvalue is
in e. In Fig. 5, we compare the precoder (28) to (27) and find thgiven by Theorem 1 as. = ||q||?, which is determined
they have comparable performance. This is possible due to the the chosen constellation. Clearly, the precoder cannot
suboptimality of the search procedure and also due to the figprove performance since both the diversity advantage and
that our design criterion is not exactly motivated by the PEP. THee minimum eigenvalue are fixed. Without precodir,
comparison shows that the diagonal precoder jointly used wigrovides no diversity gain by Theorem 2. However, with pre-
DFT has the advantage of less intensive search and compargbiéing, Theorem 1 reveals th@thas two nonzero eigenvalues

performance to the general unitary precoder. A1 = Ay = |[Wq]1/?, so the diversity gain is increased to two
and the degenerate column suggests a trivial power allocation
B. Nonunitary Precoding With Channel Statistics scheme. The coding gain is further improved by using nonuni-

To illustrate how nonunitary precoding can further improvE'Y precoding. Similarly, _fOH%” without precoding, diversity
the interaction between the codeword and the channel, we cdiflvantage is one according to Theorem 2 and this is improved
pare a unitary precoder with a nonunitary precoder that exploigs Wo by precoding alc/gordmg to Theorem 1. The coding
knowledge ofR. First, we search for unitary precoder tha8in is given by(A1d2)'/* = [[Wq]:[Wq]2|. Theorem 1
yields theW in (28). Then we use (22) to search Brfor each shows that we also improve th_e cpdmg gain by maximizing the
RY, k= 1,2,3. ForR{, andR?,, the optimaD from Search 3 e_lgenvalues by our sea_rch crlterl_on. The comparison of thr_ee
is trivial. The optimalD for R3, is diag{1.1576,0.8124}. The V|_rtual represer_ltatlon W_lth z_md without pre_codlng is shown in
comparison of unitary precoding and nonunitary precoding fdg. 6 and confirms our intuition and analytical results.
shown in Fig. 5. Nonunitary precoding outperforms unitary pre- . .
coding by up to 2 dB wheR.y is sparseR.,, R?.). For denser D. Virtual Transmit Antenna Selection Based on Second-Order
scatteringR?.), the improvement of nonunitary precoding ovef-hannel Statistics
unitary precoding is apparent though reduced. For the fully pop-In this experiment, we conclude by comparing all the pro-
ulated channelR = I), the nonunitary precoding matrix andposed precoding approaches in a spatial multiplexing system
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tiplexing using the virtual channel matridy,. The approxi-
mately uncorrelated nature &, greatly simplified this anal-
ysis.
imum rank of the matrix governing the PEP, as well as exact
characterization of its eigenvalues. The analysis in the virtual
representation yields many useful insights on the interaction be-
tween the codeword space and the channel and its effects on
_ performance. In particular, a key insight to avoid performance
o degradation in correlated channels is to avoid unit error code-
word vectors and to exploit virtual transmit antennas that are
strongly coupled to the channels. These insights are leveraged to
develop effective multiplexing techniques for correlated MIMO

channels. Unitary precoding is proposed to make spatial multi-
. plexing robust to channel correlation when channel statistics are
unknown at the transmitter. When channel statistics are known
atthe transmitter, we showed that power allocation coupled with
unitary precoding is a simple and effective means for exploiting

In particular, we derived exact expressions for the min-

Fig. 7. Effects of unitary, nonunitary precoding, and subset selection on tais information. Currently, we are investigating extension of the

4 x 4 virtual channel in (24).

work for space—time trellis coding and linear dispersion coding

for correlated MIMO channels.

with QPSK symbols and/;, = M, = 4 for the channel with
the virtual representation in (24).

Consider two scenarios: with and without subset selection. In
the first case, all four virtual transmit antennas are udéd-€ [1
4). In the second case, based on the weak coupling of virtual
transmit antenngy-(1)], we use only{[sv |2, [sv]3, [sv]4} cor-

responding td hy (2),hy(3),hy(4)} and M, = 3. 2
Using Search 1 withV' = 100, we found optimal diagonal  [3]

precoding matrices foM; = 3 and M; = 4. Using Search 2

with 10 000 candidate matrices, we found optimal general uni-

tary precoding matrices foM; = 3 and M; = 4. For the [

nonunitary precoding scenarib, was determined by the power
allocation scheme (26). The error-rate curves for all these sces)
narios are shown in Fig. 7. The case with no precoding pro-
vides minimal diversity gain as expected. Unitary precoding 6
without channel statistics provides diversity gain as predicted
by Theorem 2. Due to the weak coupling of the first virtual
angle, the power ofsy]; is wasted. Subset selection fixes this
problem, but at the expense of rate since now three symbols and
not four are sent in each time period. Interestingly, nonunitary (8]
precoding with power allocation has dramatically improved per- 9
formance both with and without subset selection. The reason
is that in either case the power is distributed only on the three
major virtual angles. Without subset selection, due to the preé}0
ence of unitary precoding, the information stream that would
have been transmitted on the first virtual antenna is mixed oft1]
the remaining three antennas and can still be decoded. Finally,
note that the allocation (26) is obtained by maximizing the mu{12)
tual information with a Gaussian codebook; it does not nec-
essarily optimize the error performance when restricted to fiI13
nite alphabet constellations. Thus, better precoder optimizations
based o, may even further improve performance. (14

VIl. CONCLUSION [15]

We have investigated the design of spatial multiplexing tech- 5
niques for correlated fading channels via the virtual channe[l1 ]
representation. We derived bounds for the PEP in spatial mul-
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