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Abstract—Spatial multiplexing techniques send independent
data streams on different transmit antennas to maximally exploit
the capacity of multiple-input multiple-output (MIMO) fading
channels. Most existing multiplexing techniques are based on an
idealized MIMO channel model representing a rich scattering
environment. Realistic channels corresponding to scattering clus-
ters exhibit correlated fading and can significantly compromise
the performance of such techniques. In this paper, we study the
design and performance of spatial multiplexing techniques based
on a virtual representation of realistic MIMO fading channels.
Since the nonvanishing elements of the virtual channel matrix
are uncorrelated, they capture the essential degrees of freedom
in the channel and provide a simple characterization of channel
statistics. In particular, the pairwise-error probability (PEP)
analysis for correlated channels is greatly simplified in the virtual
representation. Using the PEP analysis, various precoding schemes
are introduced to improve performance in virtual channels. Uni-
tary precoding is proposed to provide robustness to unknown
channel statistics. Nonunitary precoding techniques are proposed
to exploit channel structure when channel statistics are known at
the transmitter. Numerical results are presented to illustrate the
attractive performance of the precoding techniques.

Index Terms—Beamforming, correlated channels, diversity, pre-
coding, space–time coding, spatial multiplexing, virtual channel
representation.

I. INTRODUCTION

I NFORMATION theoretic studies [1], [2] indicate that
multiple antennas at the transmitter and receiver, so-called

multiple-input multiple-output (MIMO) systems, can dra-
matically increase the capacity and diversity in wireless
communication systems. Over the last few years, several
distinct bandwidth-efficient communication techniques in-
cluding space–time coding [3]–[5] and spatial multiplexing
[1], [6] have been developed to exploit the potential of MIMO
systems. Spatial multiplexing focuses on the rate advantage
whereas space–time coding focuses on the diversity advantage
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of MIMO systems. Thus far, most of MIMO studies heavily
use a statistical channel model that is an idealized abstraction
of spatial propagation characteristics and assumes independent
and identically distributed (i.i.d.) fading between different
transmit–receive antenna pairs. This idealized channel model
allows tractable and elegant capacity analysis and space–time
code design. In practice, however, the channel coefficients
between different transmit–receive antenna pairs exhibit cor-
relation due to clustered scattering in realistic environments
and the relatively small antenna spacing. In such realistic
conditions, the capacity of MIMO channels can be substantially
lower depending on the level of correlation [7], [8]. Therefore,
a channel model that accurately captures the characteristics of
the propagation environment is needed for realistic capacity
assessments, as well as for designing space–time modulation
and coding techniques that are matched to channel statistics.
Parametric physical models (see, e.g., [9]) based on array pro-
cessing techniques that explicitly model signal copies arriving
from different directions provide one such approach. However,
the nonlinear dependence of these models on physical channel
parameters, such as angles of departure/arrival, makes them
rather difficult to be incorporated in transceiver design, explicit
capacity calculations, and space–time code design.

In this paper, we propose a framework for spatial mul-
tiplexing in correlated MIMO channels using avirtual
representation for MIMO channels that has been introduced
recently [8]. The virtual representation captures the essence of
physical modeling without its complexity, provides a tractable
linear channel characterization and offers a simple and trans-
parent interpretation of the effects of scattering and array
characteristics on channel capacity and diversity. The virtual
representation corresponds to a fixed coordinate transformation
with respect to spatial basis functions defined by fixed virtual
angles of arrival/departure. The resulting virtual channel matrix
represents the channel by beamforming in fixed directions. In
the context of space–time coding, the most attractive feature
of the virtual channel matrix is that different scattering clus-
ters correspond to different nonvanishing submatrices with
approximately uncorrelated entries. Analogous to the i.i.d.
idealized statistical model, the virtual channel matrix captures
the essential degrees of freedom in correlated MIMO channels
via the powers in its nonvanishing uncorrelated entries. Thus,
the virtual channel representation provides a powerful tool for
studying the impact of correlated fading on modulation and
coding for MIMO channels. It also provides a natural frame-
work for combining beamforming ideas from array processing
with space–time coding techniques.
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Our approach to spatial multiplexing in correlated MIMO
channels is motivated by the analysis of the pairwise-error
probability (PEP) in the virtual channel representation. As we
will see, the key problem in correlated channels is that some
particular codeword error vectors may lie in the channel null
space thereby increasing the PEP. The virtual channel matrix,
due to its uncorrelated nonvanishing entries, clearly exposes
the interaction between the signal space and the channel that
causes such degradation in spatial multiplexing performance.
Based on our analysis, precoding the transmitted codewords
emerges as a simple and effective way for dealing with cor-
related fading. When the channel statistics are unknown at
the transmitter, precoding viaunitary matrices is proposed for
rotating the transmitted codewords to avoid collisions between
the codeword error vectors and the channel null space. When
channel statistics are known at the transmitter, the structure of
nonvanishing entries in the virtual channel correlation matrix
is exploited to develop precoding techniques vianonunitary
matrices thatrotate and scale the codeword vectors to avoid
collisions with the channel null space, as well as to match
transmitted signal power to the relative channel power in
different spatial dimensions.

Precoding techniques have been investigated by several re-
searchers in related contexts. Precoding to rotate the signal con-
stellation and improve robustness of spatial multiplexing is con-
sidered in [10] for a polarized channel and in [11] in the presence
of spatial correlation for the special case of two transmit and
two receive antennas. Both above schemes consider diagonal
precoding matrices and both assume knowledge of the (nondi-
agonal) channel correlation matrix at the transmitter. Linear pre-
coding is considered in [12] for space–time coded system with
known fading correlations and in [13] for transmit diversity with
random-fading channels. The key advantage of our precoding
schemes is due to the uncorrelated nature of the virtual channel
matrix: the virtual channel correlation matrix is diagonal regard-
less of the correlation structure of the original channel matrix.
As we will see, this greatly simplifies PEP analysis and also of-
fers direct insights for matching signaling schemes to channel
characteristics. In a sense, the proposed precoding techniques
effectively combine beamforming ideas with space–time coding
via the virtual channel representation.

The paper is organized as follows. In Section II, we pro-
vide a brief review of the virtual channel representation. In
Section III, we provide a general framework for PEP analysis
in correlated MIMO channels based on the virtual channel rep-
resentation. Section IV focuses on the performance of spatial
multiplexing techniques in correlated channels and discusses
the mechanisms underlying the degradation of performance
in such channels. Motivated by the analysis in Sections III
and IV, precoding techniques are proposed in Section V that
effectively account for correlated fading depending on whether
channel statistics are known at the transmitter or not. Numerical
results illustrating the performance of precoding techniques are
presented in Section VI. Section VII presents some concluding
remarks.

The following notation is used throughout the paper. We use
for conjugate, for transpose, for conjugate transpose, tr
for the trace operator, vec for stacking columns of a ma-

Fig. 1. A schematic illustrating the virtual representation of a physical
scattering environment. The virtual representation corresponds to beamforming
in fixed directions determined by the resolution of the arrays.

trix, for Kronecker product [14], tr for the
Frobenius norm, and to denote expectation with respect to
random variable when it is not clear from the context. We use
boldface lowercase letters to denote vectors and boldface upper-
case to denote matrices. is the th element of the vector
while is the element in theth row and th column of the
matrix .

II. V IRTUAL CHANNEL REPRESENTATION

We consider a narrowband MIMO system with transmit
antennas and receive antennas. In the absence of noise,
we have , where is the -dimensional transmitted
vector, is the -dimensional received vector, and is the

channel matrix coupling the transmit and receive an-
tennas. The idealized statistical model corresponding to a rich
scattering environment assumes that the elements ofare i.i.d.
complex Gaussian random variables. However, the elements of

are correlated in realistic environments and the statistics of
are dictated by the scattering and array characteristics, such as
angular spreads of scattering clusters and antenna spacing [7],
[8]. In this paper, we use the virtual channel representation in-
troduced in [8] to capture the statistical structure of correlated
fading channels imposed by clustered scattering environments.

A schematic illustrating the virtual channel representation is
shown in Fig. 1. Consider one-dimensional uniform linear ar-
rays (ULAs) of antennas at both the transmitter and receiver
for simplicity and assume that far-field assumptions apply. The
channel matrix can then be described via the array steering and
response vectors given by

(1)

where represents the angle variable and is related to the phys-
ical angle (measured with respect to the horizontal axis as
illustrated in Fig. 1) as , where is the wave-
length of propagation and is the antenna spacing. The vector

represents the signal response at the receiver array due
to a point source in the direction . Similarly, repre-
sents the array weights needed to transmit a beam focused in the
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direction of . Note that the steering and response vectors in
(1) are periodic in with period 1.

Parameterized physical models representvia signal prop-
agation over multiple paths (see, e.g., [8] and [9])

(2)

where is the fading gain, represents the angle of arrival
(AoA), and represents the angle of departure (AoD) asso-
ciated with theth path. The virtual representation, on the other
hand, exploits the finite dimensionality of the signal space1 to
use spatial beams infixed, virtual directions (as illustrated in
Fig. 1) to capture the effect of the scattering environment [8].
The virtual channel representation can be expressed as

(3)
where ( ) and

( ) are full-rank
matrices defined by the fixed virtual angles and .
Uniform sampling of in the principal period ( )
is a natural choice for virtual spatial angles

(4)

which yields unitary matrices and . is an
discrete Fourier transform (DFT) matrix and is an
DFT matrix. Therefore, is unitarily equivalent to and
captures all channel information.

Realistic propagation environments can be modeled via a su-
perposition of scattering clusters with limited angular spreads
(see, e.g., [8] and [15]). The virtual channel matrix pro-
vides an intuitively appealing “imaging” representation for such
environments: different clusters correspond to different nonva-
nishing submatrices of . Furthermore, it is shown in [8] that
the nonvanishing elements of are approximately uncorre-
lated under the usual assumption of uncorrelated physical scat-
tering. The virtual channel matrix clearly reveals the capacity
and diversity afforded by a given scattering environment. The
capacity multiplier provided by a cluster is determined by the
size/rank of the corresponding submatrix and depends on the
number of virtual angles that lie within the angular spread of
the cluster. The number of nonvanishing entries in each subma-
trix determines the diversity afforded by the cluster and depends
on the nature of scattering within the cluster.

A valuable representation of (3) is obtained by stacking the
columns of as

vec vec

(5)

1Due to finite number of antennas and, thus, finite array apertures.

using the identity vec vec . Let
denote the correlation matrix of and the corre-

lation matrix of vec . and are related by

(6)

where are the diagonal entries of .
Note that due to the approximately uncorrelated nature of the
elements of , is approximately diagonal. We assume

to be exactly diagonal in this paper.2 Furthermore,
may have some zero elements on the diagonal corresponding
to the vanishing elements in due to clustered scattering.
We note that and are unitarily equivalent since the
Kronecker product of two unitary matrices is also unitary.
Thus, (6) is an eigendecomposition of and (5) is the corre-
sponding Karhunen–Loeve-like representation for each channel
realization. Therefore, the nonvanishing diagonal elements of

that capture the power in the nonvanishing elements of
also determine the eigenvalues of. As we will see later, this
is a very powerful property of the virtual channel matrix from
the viewpoint of PEP calculations.

III. PEPIN SPATIAL MULTIPLEXING SYSTEMS

In this section, we review spatial multiplexing and derive the
PEP for spatial multiplexing in correlated channels via the vir-
tual representation.

A. Review of Spatial Multiplexing

Spatial multiplexing is a modulation technique for MIMO
communication systems in which independent streams of data
are multiplexed in space and subsequently demultiplexed at the
receiver [1], [6]. During every discrete-time symbol period, the
encoder multiplexes complex symbols from a
unit energy constellation to form a complex vector codeword.
The components of this vector codeword are modulated, up-con-
verted and launched into the channel.

Neglecting symbol timing errors and frequency offsets, the
received signal vector after matched filtering and sam-

pling can be written as

(7)

where is the vector realization of i.i.d. complex circularly
symmetric additive white Gaussian noise (AWGN) processes
with distribution , where denotes the iden-
tity matrix of dimension and is the total signal power. The
channel is assumed to be perfectly known at the receiver (via
training symbols, e.g.,) butunknown to the transmitter. As will
become clearer, limited information about thestatisticsof at

2The approximation gets better with larger number of antennas and/or large
array apertures [8].
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the transmitter can be fruitfully exploited. We assume the use of
the maximum-likelihood (ML) decoder at the receiver.

B. Pairwise-Error Probability (PEP)

For random channels the metric of interest is typically the
average probability of error. Exact calculation of the symbol or
bit-error probability for spatial multiplexing systems, however,
is difficult [11], [16]. One solution commonly employed [17]
is to upper bound the desired error probability using the union
bound and the PEP.

Let denote the probability that is
decoded at the receiver erroneously as for a given . Let
the error vector and define the error corre-
lation matrix of as . Using the
Chernoff bound to upper bound the PEP and
the fact that has complex normal distribution with zero mean
and covariance , it can be shown that [18]

(8)

This is strictly true only for nonsingular. As we pointed out,
is often singular or nearly singular due to clustered scattering. To
avoid difficulties with the singular distribution, we can proceed
with the above derivation assuming that and then
can let go to zero to arrive at the result in (8). A more formal
derivation of (8) is presented in [16] and [19].

Substituting (6) into (8) using the virtual representation, fol-
lowing the identity and using the dis-
tributive property of the Kronecker product, we have

(9)

where ,
rank and denotes theth eigenvalue of .

C. Signaling in the Virtual Channel

Define the DFT of the codeword error correlation matrix as

(10)

which is rank-1 and is the DFT of the error
vector . From (9), we see that the PEP is governed by the
interaction between and . The virtual channel
representation, thus, suggests the DFT as a natural precoding
matrix so that the codewords directly interact with the scattering
characteristics captured by . That is, we consider transmitted
signals of the form so that the channel (7) becomes

(11)

Fig. 2. Signaling in the virtual channel. (a) System depiction withA as
a precoder andA as a postcoder.s is the multiplexed symbol vector.
(b) Equivalent representation of (a).s directly interacts withH .

where and similarly for . The above equa-
tion says that at the transmitter, we first apply a DFT () to
the transmitted codewords before launching them onto the
channel and at the receiver, we first apply a DFT () to the
received vector before decoding . Thus, (11) corresponds to
signaling and reception directly in the virtual (Fourier) domain
as illustrated in Fig. 2. Our subsequent development is in the
context of (11). In this context, the transmit and receive antennas
correspond to the virtual transmit and receive elements (corre-
sponding to beams in virtual directions) and the matrix
becomes the codeword error correlation matrix ( ) corre-
sponding to the actual transmitted vectors [not their DFT as in
(10)].

D. Rank and Eigenvalue Characterization

According to the rank and determinant criteria [3], [20], the
error rate performance is a function of the rank and the product
of the eigenvalues of . The diversity advantage is deter-
mined by the rank which we can bound as

(12)

since is a rank-1 matrix. In realistic channels corre-
sponding to clustered scattering, is not diagonal but is
still diagonal due to the properties of the virtual representation
[8]. Note that the maximum rank of is and, thus,
the absence of coding across time limits spatial multiplexing to
a diversity advantage (defined as the minimum rank of all pos-
sible ) that is at most equal to . Space–time coding
can increase the rank of to thereby restoring the
diversity loss. In addition to the rank of , the nature of
scattering can also reduce the diversity advantage. This is be-
cause some diagonal elements of may be zero or near-zero
depending on the scattering geometry and antenna spacing [8].
However, due to the inherent difference in the ranks of and

, could have many vanishing (or small) di-
agonal entries and still yield the maximum diversity advantage
( ). It all depends on the interaction between (channel
statistics) and (code error properties) in (9).

Let diag be the
diagonal decomposition of in terms of matrices,

, where is the th column of
.

Theorem 1: Explicit characterization of eigenvalues of
. The eigenvalues of are given by

(13)
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Proof: We suppress the superscript ( ) for simplicity
of notation. First note that for ,

. Furthermore, the nonvanishing eigen-
values of a product of matrices are not changed by changing the
order of matrices. Now

(14)

where note that matrices in the last equality
are diagonal matrices. Thus, the eigenvalues of are given
by the diagonal entries of the matrix in (14) which are given in
(13).

The above theorem has a very insightful interpretation: the
th eigenvalue is equal to a weighted sum of the powers of all

virtual transmit antennas coupled to theth virtual receive an-
tenna (via the th row of ). The weighting is given by the
magnitude squares of the error vector components, ,
corresponding to different virtual transmit antennas. Note that
the th eigenvalue may be zero if either for all

( th row of is zero) or if for those values of for
which . Rearranging the order of nonzero eigen-
values, the PEP in (9) can be bounded at high signal-to-noise
ratios (SNRs) as

(15)
and, thus, the diversity gain is and the coding gain is

. Note that both the diversity and coding
gains depend on both the error codeword properties, as well as
channel characteristics as evident from Theorem 1. For given

, to maximize diversity gain we would like to have as many
elements of error vectors be nonvanishing for which the
corresponding is nonzero, where denotes the set
of all possible codeword error vectors. To maximize coding
gain, in addition, we would like each to be as large as
possible over the entire set.

IV. SPATIAL MULTIPLEXING IN THE VIRTUAL CHANNEL

In this section, we use the PEP analysis in the previous sec-
tion to get further insight into the performance of spatial multi-
plexing in correlated channels.

Achieving the upper bound in (12) assumes that column space
of is not contained in the null-space of .
However, due to the unconstrained nature (relative to general
space–time coding) of codeword error vectors in spatial multi-
plexing and due to the vanishing diagonal entries of in clus-
tered scattering, full intersection between the column space of

and the range space of cannot be guaranteed.
This results in loss of diversity gain which we quantify in this
section.

Exploiting the diagonal nature of and the structure of the
codeword error vectors in spatial multiplexing, we can obtain
an exact expression for the diversity advantage that holds in a
variety of situations in which the same constellation is used at
all virtual transmit antennas.

Theorem 2: Exact diversity advantage. For spatial multi-
plexing using the same constellation at each virtual transmit
antenna, the minimum rank of over satisfies

(16)

where is the indicator function and is a threshold value
for determining the essentially nonvanishing entries of.

Proof: First note that
by the distributive property

of Kronecker products. Thus, the rank of is deter-
mined by the rank of . Recall that
diag . Thus, we have

(17)

Clearly, the worst set of error vectors are of the form in which
is nonzero in only one element (unit error vector). In the case

that the same constellation is used on all virtual antennas, all
such error vectors are possible. Suppose thatis only nonzero
in the th element. From (17), the rank of for such
an error vector is determined by the nonvanishing diagonal ele-
ments in which is exactly the expression corresponding
to the index in (16). Thus, the minimum rank corresponds
to with the smallest number of nonvanishing elements.
And this is achievable since all such unit error vectors are pos-
sible. This yields the equality in (16).

Theorem (16) gives a convenient and explicit expression for
the worst-case diversity advantage as a function of the scattering
environment. The actual diversity gain can be larger depending
on the interaction between the channel and the error codeword
vectors. The proof of the theorem yields useful insights in this
regard. In particular, it shows that if theth virtual transmit an-
tenna is not coupled at all to the receivers— (the

th column of is identically zero)—no symbols should be
transmitted on that virtual transmit antenna; that is should
be zero. This is because those transmissions are not observable
at the receiver at all. This is important in practice since some of
the virtual transmit elements might be weakly coupled to the re-
ceivers and should not be used for transmission. In such cases,
data should only be multiplexed on the virtual transmit antennas
corresponding to relatively strong columns of . As our nu-
merical results demonstrate, accounting for such weakly cou-
pled virtual transmit antennas can result in significant improve-
ment in performance. A related important insight is to avoid unit
error codeword vectors. Unfortunately, since the symbols at dif-
ferent virtual transmit antennas are independent in spatial mul-
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tiplexing, all such error vectors are possible. As we discuss in
the next section, applying a precoding transform to the trans-
mitted vectors is an effective way to avoid such error vectors.
More importantly, since we cannot introduce dependencies be-
tween transmitted symbols in spatial multiplexing, such a pre-
coding approach is the only way of avoiding unit error codeword
vectors.

V. UNITARY AND NONUNITARY PRECODING

In this section, we leverage the insights from PEP analysis
to propose unitary and nonunitary precoding that improve the
robustness of spatial multiplexing in correlated channels.

A. Unknown Channel Statistics—Unitary Precoding

Our PEP analysis shows that the key source of performance
degradation is the existence of unit error vectors and the van-
ishing diagonal entries of due to clustered scattering. Fur-
thermore, may not be available at the transmitter. In such
cases, it is of interest to develop techniques that minimize the
occurrence of unit error vectors and also make spatial multi-
plexing robust to the vanishing diagonal elements of.

Designing general space–time coding schemes that are robust
to correlated channels is an interesting open problem. In spa-
tial multiplexing, since the transmitted vectors are not spatially
coded, we are left with the option of applying a precoding trans-
form to the transmitted vectors. In this paper, we focus on linear
precoding transforms. Let be a precoding matrix
that is applied to the output of the spatial multiplexer. Instead
of transmitting codeword , we transmit in Fig. 2. The
receiver observes

(18)

The goal of this section is to find , without knowledge of
or , to improve the error-rate performance of the communi-
cation link.

Due to lack of knowledge of , we choose to be unitary
since it does not change the spatial distribution of power. A sim-
ilar approach has been taken in [10], in which a precoding matrix
is used to improve the robustness of spatial multiplexing sys-
tems in polarization channels. Their precoder assumes knowl-
edge of a nondiagonal , parameterized by the cross-polar-
ization discrimination, but otherwise serves to precondition the
transmitted signal vectors. In our case, the precoder is designed
to be robust to the nonvanishing diagonal entries of.

From the structure of the virtual representation, a DFT pre-
coder may sound tempting; that is [we remove the in
Fig. 2(a)] so that . In this case, the trans-
mitted codewords undergo a DFT due to the channel propa-
gation before encountering . However, such a DFT precoder
is not attractive since it maps a constant error vector of the form

into the unit vector which is detri-
mental to the PEP from Theorem 2. However, with some modi-
fication a DFT precoder may be useful, as elaborated below.

From the proof of Theorem 2, diversity advantage is compro-
mised when there are cancellations in the product .
Furthermore, such cancellations are particularly acute for unit

error vectors. We define arobust unitary precoderas one that
satisfies the conditions in the following definitions. Let(not
be confused with the in Theorem 2) be a design parameter.

• Define . A robust
unitary precodersatisfies for

and for all , for some .
• An optimal robust unitary precoderis one that maximizes

the threshold over the space of candidate precoders; that
is

(19)

An optimal precoder may not be unique.
It is clear from Theorem 2 that a robust unitary precoder en-

sures that all elements of are sufficiently nonvanishing for
all . Then, from (13) in Theorem 1, we see that all nonva-
nishing elements in contribute to the eigenvalues and, thus,
contribute to the diversity gain by maximizing the rank. [Note
that is replaced with in (13) with precoding.] An “op-
timum” precoder makes the modulus of all elements of
as large as possible to maximize the magnitude of eigenvalues
in (13). This contributes to both the diversity gain and coding
gain.

Finding an optimum robust unitary precoder is difficult since
depends on the number of transmit antennas, as well as the

specific type of constellation. Optimization is difficult since ro-
bust unitary precoders satisfy a max–min criterion, where both
the maximum and minimum are effectively taken over discrete
spaces. However, a unitary can be represented using a re-
duced set of coefficients. We use this fact to propose two dif-
ferent unitary precoders.

Diagonal Precoder: The simplest class of unitary matrices
take the form

diag (20)

Clearly, by design and there are only
free parameters since we can assume the first coefficient is one
without loss of generality. However, this precoder does not solve
the problem of avoiding unit error codeword vectors. In con-
junction with a DFT precoder, though, this simple precoder may
be effective. Suppose that we transmit signals of the form

. From (7) and (18), the channel equation in this case
becomes . The intuition behind
this precoder is that the matrix (which is analogous
to an all pass filter) will smear the error vectors over all frequen-
cies (virtual angles) so that all elements of [which
replaces in (13) in this case] will be nonvanishing for both
unit error vectors, as well as constant error vectors (which cause
problems in a DFT precoder).

For reasonable , we propose the following exhaustive
search technique.

Search 1: Uniformly quantize the phase values to
and let be the set of candidate pre-

coding matrices. Choose the such that (19) is satisfied.
We consider an example of a spatial multiplexing system with

QPSK symbols and . The optimal precoding ma-
trix is found and the simulation results are shown in Fig. 4 in
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Section VI, where we show significant improvements with pre-
coding. Given the performance improvements, a natural ques-
tion is whether a nondiagonal unitary can even further im-
prove performance.

General Unitary Precoder:Consider a general unitary pre-
coding matrix . Since the criterion in (19) does not readily
admit a closed form solution, a numerical search is needed. One
approach is to characterize a unitary matrix using a canonical
representation, say using the Givens rotations, as in [11]. We
then quantize the angles of the rotations to enumerate a family
of candidate precoding matrices and optimize. For large num-
bers of antennas this becomes computationally intensive due to
the number of parameters that need to be quantized. In this case,
we propose the following design based on a random search.

Search 2: Generate a set of random complex ma-
trices from the complex Gaussian distribution. Letbe the set
of orthogonal matrices constructed from the QR decomposition
of the random matrices [21]. Choose the such that (19)
is satisfied.

Clearly, Search 2 is not guaranteed to be optimal. We find,
however, that it is relatively easy to find a good as we will
show in Section VI

B. Known Channel Statistics—Nonunitary Precoding

Robust precoders do not exploit knowledge of the channel
statistics and structure at the transmitter—the precoding ma-
trix is designed to make the system robust to channel structure
in clustered scattering environments. We now present a general
nonunitary precoding design which can incorporate knowledge
of channel structure at the transmitter. The second-order sta-
tistics of the channel, captured by , typically change more
slowly than the channel realizations and, thus, it may be pos-
sible to convey back to the transmitter.

Consider a nonunitary precoding matrix

(21)

where is a unitary precoding matrix (as in the previous
section) and is chosen to satisfy the power constraint

. Generally, if for ,
is a nonunitary matrix. When , becomes

unitary. could be interpreted as a scaling or power allocation
matrix. Since we have the knowledge of at the transmitter,
instead of the robustness criterion, we seek athat minimizes
the maximum PEP (9) for all possible error vectors. Letand

denote sets of candidate and matrices, respectively.
We define an optimal nonunitary precoding matrix as one that
minimizes the maximum PEP of codeword error

(22)

where now . The eigen-
values in (13) now become

(23)

Fig. 3. Geometric representation of effects of precoding: a) original error
constellation; b) unitary precoding; c) nonunitary precoding.

The use of unitary or nonunitary precoding can be motivated
by considering the geometry of signal constellations and
channel statistics. An example of signal error vector constel-
lation is illustrated in Fig. 3(a). Since may be sparse, the
channel matrix has a certain “null space”, captured by the
vanishing diagonal elements of in the context of PEP. If
an error vector lies in this channel null space, it cannot be
detected at the receiver and significantly compromises the PEP.
In order to improve performance, unitary precoding rotates the
error vector constellation to some angle to avoid error vectors
(particularly unit error vectors) lying in the channel null space.
This corresponds to making as many elements ofin (23)
nonvanishing as possible over all . This contributes
primarily to diversity gain and some to coding gain. Without
knowledge of channel statistics at the transmitter, unitary
precoding can provide robust performance since it tries to
minimize the projection of error vectors onto the channel null
space. When the transmitter has knowledge of, nonunitary
precoding not only prevents an error vector from lying in the
channel null space, but it also increases the projection of all
the error vectors onto the channel range space via judicious
choice of . This corresponds to making as large
as possible in (23) over all . This increases the coding
gain compared with unitary precoding. A schematic illustrating
the effects of unitary and nonunitary precoding is shown in
Fig. 3(b) and (c). A similar channel geometry explanation was
also given in [11], where only a particular 22 system with
diagonal precoding was considered.

To further convey the intuition of unitary and nonuni-
tary precoding, consider a concrete example of a

of the
form

(24)

where stands for nonvanishing elements with variance 0.02 and
stands for nonvanishing elements with unit variance. As we

mentioned earlier, nonvanishing elements of correspond to
the nature of scattering. In this example, is weakly sup-
ported by due to low power in . Similarly, ,
that corresponds to the third-virtual transmit angle and ,
only couples with one virtual receive angle and, thus, there is
no diversity gain for this symbol. Therefore, we would expect
the reliability of transmission of and to be poor. In
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order to improve performance, we could spread the informa-
tion transmitted by and over other transmit angles
(corresponding to and with more power). Uni-
tary precoding is designed to achieve this goal. On the other
hand, couples with receivers so weakly that it may not be
used for transmission at all. Therefore, instead of equally dis-
tributing transmit power among all the virtual transmit angles,
it is natural to allocate more transmit power to the more reli-
able transmit angles if sucha priori information is available at
the transmitter. The diagonal weighting matrixin nonunitary
precoding is designed to achieve this goal. It is also clear that in
the extreme case of a fully populated , which is analogous
to an i.i.d. channel [8], neither unitary precoding nor nonunitary
precoding would be needed.

A numerical search is generally needed to obtain. When
the dimension is large, the search for that jointly optimizes

and may be very computationally intensive. An alterna-
tive suboptimal solution is the following.

Search 3: Let be an optimal robust unitary pre-
coder obtained, for example, using Search 1 or Search 2 in
Section V-A. Let denote the space of matrices obtained,
for example, by quantization and normalization. Choose the
that satisfies (22) for the given and known .

Using a that is an optimal robust precoder has a number
of important advantages. First, if is not available, then the
transmission is still robust. Second, there are fewer parameters
to optimize in than in . Since the channel statistics change
over time on a relative slower time scale than changes in channel
realizations, the optimization of can be done in real-time.
We now give another optimization criterion forbased on mu-
tual information.3 Assume that the codewords are complex
Gaussian distributed, , (the transmitted signal is
now , and ). Therefore,
it can be shown using Jensen’s and Hadamard inequalities, the
average mutual information betweenand is [2]

(25)

where , . The op-
timal then maximizes (25) under the power constraint. This
is a standard waterfilling problem [23] and the solution is

(26)

here denotes the positive part ofand is chosen so that
.

C. Virtual Transmit Antenna Selection

The mutual information based power allocation procedure
in (26) explicitly illustrates an important point that is implicit
in (22). In some cases, a particular virtual transmit angle
will contribute a negligible amount of power to the receiver
[e.g., the first virtual antenna in (24)] making this virtual
angle infeasible—the power budget may not be sufficient to

3In [22], it is argued that maximizing mutual information also minimizes PEP.

Fig. 4. No precoding versus diagonal precoding as a function of the number
of nonvanishing elements ofR .

allocate any power to this virtual antenna. This problem can be
alleviated by applying a technique known as stochastic antenna
subset selection [24]. The idea is to allow only a subset of

of the virtual angles to be used. The size of can
be determineda priori from and then Search 3 can be
performed over candidate subset. Alternatively, the number and
locations of nonzero in (26) can be used to determine the
active virtual transmit antennas and then Search 3 can be used
to find for these antennas.

VI. NUMERICAL RESULTS

A. Unitary Precoding Without Channel Statistics

In this experiment, we consider a spatial multiplexing system
with quaternary phase-shift keying (QPSK) symbols and

. We consider the performance with and without
precoding as a function of the number of nonzero diagonal ele-
ments of . We denote with nonzero elements as ,

, , ,
, . We used

100 000 Monte Carlo simulations to estimate the average
symbol-error rate for each .

First consider the case of no precoding as illustrated in Fig. 4.
The symbol-error rate is about 0.5 for and since the
symbol stream transmitted from the second virtual antenna is
lost in the null-space of the channel. For the case of, there
is a first-order diversity, since the minimum rank is one as fol-
lows from Theorem 2. Finally, corresponds to a rich
channel and yields a second-order diversity gain and maximum
coding gain.

Now we show how even diagonal precoding improves the di-
versity advantage in sparse-scattering environments. By quan-
tizing the angles with , we used Search 1 to find the
following optimal diagonal precoding matrix with

(27)

The performance improvement obtained using this precoder
is illustrated in Fig. 4 and compared with the case of no pre-



864 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 5, JUNE 2003

Fig. 5. Diagonal, general unitary, and nonunitary precoding as a function of
the number of nonvanishing elements ofR .

coding. Even with a single nonzero element, as predicted by
Theorem 2, there is a first-order diversity gain since both data
streams get coupled to the nonvanishing due to rota-
tion. As fills out with 2, 3, and 4 nonzero diagonal en-
tries there is a second-order diversity advantage as predicted by
Theorem 2. Since each additional nonzero element increases the
received power, there is an increase in coding gain as predicted
by Theorem 1.

Now consider a general unitary precoder. Using Search 2,
we searched over 10 000 random 22 matrices and found the
following optimal precoding matrix with :

(28)

From Theorem 1, we expect that there is a marginal coding
gain compared with precoder (27) due to the marginal difference
in . In Fig. 5, we compare the precoder (28) to (27) and find that
they have comparable performance. This is possible due to the
suboptimality of the search procedure and also due to the fact
that our design criterion is not exactly motivated by the PEP. The
comparison shows that the diagonal precoder jointly used with
DFT has the advantage of less intensive search and comparable
performance to the general unitary precoder.

B. Nonunitary Precoding With Channel Statistics

To illustrate how nonunitary precoding can further improve
the interaction between the codeword and the channel, we com-
pare a unitary precoder with a nonunitary precoder that exploits
knowledge of . First, we search for unitary precoder that
yields the in (28). Then we use (22) to search forfor each

, . For and , the optimal from Search 3
is trivial. The optimal for is . The
comparison of unitary precoding and nonunitary precoding is
shown in Fig. 5. Nonunitary precoding outperforms unitary pre-
coding by up to 2 dB when is sparse ( , ). For denser
scattering ( ), the improvement of nonunitary precoding over
unitary precoding is apparent though reduced. For the fully pop-
ulated channel ( ), the nonunitary precoding matrix and

Fig. 6. Effects of unitary and nonunitary precoding on 2� 2 virtual channels
with two nonzero elements.

unitary precoding are identical since the optimalin this case
is .

C. Impact of Precoding on Degenerate Virtual Channels

We have shown that precoding can improve the performance
of spatial multiplexing in correlated channels. Now we use an
example to explicitly illustrate the diversity and coding advan-
tage due to precoding using Theorem 1 and 2. We use three dif-
ferent possible 2 2 representations for : row degenerate,
column degenerate, and diagonal

(29)

For , Theorem 2 shows that the minimum diversity
advantage of this system is one and the only eigenvalue is
given by Theorem 1 as , which is determined
by the chosen constellation. Clearly, the precoder cannot
improve performance since both the diversity advantage and
the minimum eigenvalue are fixed. Without precoding,
provides no diversity gain by Theorem 2. However, with pre-
coding, Theorem 1 reveals thathas two nonzero eigenvalues

, so the diversity gain is increased to two
and the degenerate column suggests a trivial power allocation
scheme. The coding gain is further improved by using nonuni-
tary precoding. Similarly, for , without precoding, diversity
advantage is one according to Theorem 2 and this is improved
to two by precoding according to Theorem 1. The coding
gain is given by . Theorem 1
shows that we also improve the coding gain by maximizing the
eigenvalues by our search criterion. The comparison of three
virtual representation with and without precoding is shown in
Fig. 6 and confirms our intuition and analytical results.

D. Virtual Transmit Antenna Selection Based on Second-Order
Channel Statistics

In this experiment, we conclude by comparing all the pro-
posed precoding approaches in a spatial multiplexing system
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Fig. 7. Effects of unitary, nonunitary precoding, and subset selection on the
4� 4 virtual channel in (24).

with QPSK symbols and for the channel with
the virtual representation in (24).

Consider two scenarios: with and without subset selection. In
the first case, all four virtual transmit antennas are used (
). In the second case, based on the weak coupling of virtual

transmit antenna , we use only cor-
responding to and .

Using Search 1 with , we found optimal diagonal
precoding matrices for and . Using Search 2
with 10 000 candidate matrices, we found optimal general uni-
tary precoding matrices for and . For the
nonunitary precoding scenario,was determined by the power
allocation scheme (26). The error-rate curves for all these sce-
narios are shown in Fig. 7. The case with no precoding pro-
vides minimal diversity gain as expected. Unitary precoding
without channel statistics provides diversity gain as predicted
by Theorem 2. Due to the weak coupling of the first virtual
angle, the power on is wasted. Subset selection fixes this
problem, but at the expense of rate since now three symbols and
not four are sent in each time period. Interestingly, nonunitary
precoding with power allocation has dramatically improved per-
formance both with and without subset selection. The reason
is that in either case the power is distributed only on the three
major virtual angles. Without subset selection, due to the pres-
ence of unitary precoding, the information stream that would
have been transmitted on the first virtual antenna is mixed on
the remaining three antennas and can still be decoded. Finally,
note that the allocation (26) is obtained by maximizing the mu-
tual information with a Gaussian codebook; it does not nec-
essarily optimize the error performance when restricted to fi-
nite alphabet constellations. Thus, better precoder optimizations
based on may even further improve performance.

VII. CONCLUSION

We have investigated the design of spatial multiplexing tech-
niques for correlated fading channels via the virtual channel
representation. We derived bounds for the PEP in spatial mul-

tiplexing using the virtual channel matrix . The approxi-
mately uncorrelated nature of greatly simplified this anal-
ysis. In particular, we derived exact expressions for the min-
imum rank of the matrix governing the PEP, as well as exact
characterization of its eigenvalues. The analysis in the virtual
representation yields many useful insights on the interaction be-
tween the codeword space and the channel and its effects on
performance. In particular, a key insight to avoid performance
degradation in correlated channels is to avoid unit error code-
word vectors and to exploit virtual transmit antennas that are
strongly coupled to the channels. These insights are leveraged to
develop effective multiplexing techniques for correlated MIMO
channels. Unitary precoding is proposed to make spatial multi-
plexing robust to channel correlation when channel statistics are
unknown at the transmitter. When channel statistics are known
at the transmitter, we showed that power allocation coupled with
unitary precoding is a simple and effective means for exploiting
this information. Currently, we are investigating extension of the
work for space–time trellis coding and linear dispersion coding
for correlated MIMO channels.
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