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ABSTRACT

Wavelet shrinkage is a signal estimation technique that exploits the remarkable abilities of the wavelet transform
for signal compression. Wavelet shrinkage using thresholding is asymptotically optimal in a minimax mean-square
error (MSE) sense over a variety of smoothness spaces. However, for any given signal, the MSE-optimal processing
is achieved by the Wiener filter, which delivers substantially improved performance. In this paper, we develop a
new algorithm for wavelet denoising that uses a wavelet shrinkage estimate as a means to design a wavelet-domain
Wiener filter. The shrinkage estimate indirectly yields an estimate of the signal subspace that is leveraged into the
design of the filter. A peculiar aspect of the algorithm is its use of two wavelet bases: one for the design of the
empirical Wiener filter and one for its application. Simulation results show up to a factor of 2 improvement in MSE
over wavelet shrinkage, with a corresponding improvement in visual quality of the estimate. Simulations also yield a
remarkable observation: whereas shrinkage estimates typically improve performance by trading bias for variance or
vice versa, the proposed scheme typically decreases both bias and variance compared to wavelet shrinkage.
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1. INTRODUCTION

The wavelet transform has rapidly become an indispensable signal and image processing tool for a variety of appli-
cations, including estimation, classification, and compression. One of the key properties underlying the success of
wavelets is that they form unconditional bases for a wide variety of signal classes.! Consequently, wavelet expansions
tend to concentrate the signal energy into a relatively small number of large coefficients. This energy compaction
property of the wavelet transform makes the wavelet domain attractive for signal processing, and in particular signal
estimation.

Consider the classical problem of recovering samples of an unknown deterministic continuous-time signal s(¢), ¢ €
(0, 1], from the set of noise-corrupted samples

2()) Z s@/N) + n(i), i=12,..., N, (1)

with n(?) a zero-mean white Gaussian noise of variance o2, Let , s, n denote N x 1 column vectors containing the
samples z(i), s(i/N), and n(i), respectively, and let W denote an N x N orthonormal wavelet transform matrix.??

In the wavelet domain, (1) becomes
de f

= 60 + =z, (2)
with y = Wz, 0 = Ws, and 2 = Wn. Our goal is to estimate the true signal wavelet coefficients 8 given the noisy
observations y. Note that an orthonormal wavelet transformation will map n to a z that is likewise zero-mean white
Gaussian with variance 02, while compacting typical signals s into a small number of large wavelet coefficients in 6.
Thus a reasonable approach to wavelet-based signal estimation is to shrink the small entries of y (where the signal
is not) while retaining the large entries of y (where the signal is). The motivation for processing the coefficients
individually stems from the fact that the wavelet transform tends to decorrelate the data. That is, roughly speaking,
the wavelet transform approximates the Karhunen-Loeve (KL) transform.
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Figure 1. Wavelet-domain filtering using a diagonal weighting matrix H.

While simple, the resulting wavelet shrinkage estimates®® are surprisingly powerful. In wavelet shrinkage, the
shrink /retain operation can be viewed as a diagonal filtering operation in the wavelet domain. Representing the filter
by

H 2 diaglh(1), h(2),..., h(N)], (3)

we have the signal estimate
Y wiHwW. (4)

A block diagram for wavelet-domain filtering is given in Figure 1.

Wavelet shrinkage filters come in two basic flavors. The hard threshold filter Hp discards coefficients below a
threshold value 7 that is determined by the noise variance o:

hati) { 1L, if|y(@)| > 7 (5)

0, otherwise.

The soft threshold filter H ; is similar, but in addition shrinks the wavelet coefficients above the threshold:

sgnly ()] [ly($)|—7] ; ;
() d;f{ Mt ()] > 7 (®

0, otherwise.

The uncanny ability of wavelet shrinkage to remove noise is illustrated in Figure 2 on Donoho’s Doppler test signal.
Related shrinkage approaches include VisuShrink, SureShrink, and the Hybrid scheme.* Certain wavelet Shrinkage
estimates are asymptotically optimal in a minimax mean-squared-error (MSE) sense over various signal smoothness

spaces.4’5

Nevertheless, for a given, finite-length signal, the optimal filter minimizing the MSE is the Wiener filter H,,,
with®
déf 62(2) (7)
6%(i) + o2°
Note that the Wiener filter requires knowledge of the signal and noise statistics. The Wiener estimate for the signal

in Figure 2(a) is shown in Figure 2(g). The MSE resulting from this optimal H,, is about 3.75 times smaller than
that obtained using Hy,.

hu ()

The superior performance of the Wiener filter 1s due to the fact that it strikes an optimal balance in the bias-
variance tradeoff. Of course, it does so only because of exact knowledge of the signal and noise statistics. In contrast,
soft threshold estimates have a remarkably low variance but a relatively high bias. Other shrinkage techniques with
different bias-variance tradeoffs improve the MSE by trading a small increase in variance for a substantial reduction
in bias and vice versa (see” and the references therein.)

In this paper, we introduce a simple scheme for wavelet denoising that employs wavelet shrinkage in the design
of an empirical wavelet-domain Wiener filter. Our WienerShrink approach involves the computation of two different
wavelet transforms — one for the design of the Wiener filter and the other for its application on the noisy data.
Simulation results show that WienerShrink signal estimates can reduce the MSE by up to a factor of 2 over classical
wavelet shrinkage techniques, with a corresponding improvement in visual appearance. A WienerShrink denoised
version of the corrupted Doppler signal from Figure 2(b) is shown in Figure 2(f). Our simulations also indicate a
remarkable property of the proposed method: rather than merely striking a better bias-variance tradeoff than wavelet
shrinkage, it typically improves both bias and variance performance simultaneously.
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Figure 2. Signal denoising of the Doppler test signal. (a) Clean signal s, N = 1024. (b) Noisy signal s + n with
o = /3. Signal estimates using (c) hard threshold (MSE=0.58), (d) HybridShrink (MSE=0.71), (e) empirical Wiener
filter based on hard threshold pilot estimate (MSE=0.34), (f) empirical Wiener filter based on HybridShrink pilot
estimate (MSE=0.44), and (g) optimal Wiener filter (MSE=0.15). In each plot, the clean signal is shown dotted.
(h) Wavelet-domain filters: hard threshold (solid), optimal Wiener (dot), and empirical Wiener designed using a
hard threshold pilot estimate in Figure 3 with Wy # W (dash-dot). The empirical Wiener filter designed using
W, = W, (dash) almost completely coincides with the hard threshold filter (solid).



In the next Section, we provide a discussion of the relevant aspects of the Wiener filter theory. Intuition behind
WienerShrink follows in Section 3. In Section 4, we provide a number of examples of the method for denoising
both signals and images. We close with some concluding remarks and avenues for future research in Section 5. (For
background information on wavelet transforms and wavelet matrices, we refer the reader to.>?)

2. WIENER FILTERING

Consider anew the problem of estimating s from z in (1). The optimal linear estimator 3 = G that minimizes the
MSE E||s — 3]|? is the Wiener filter®

G, 2 R,(R,+o), (8)
with R, "< E[ss”] and I the identity matrix.
The eigenexpansion of R is given by
Ns
R, = UNU" = ) Nuguf. (9)
k=1

Here, N; < N is the rank of R;, the uy’s are the eigenfunctions of R;, and the Ag’s are eigenvalues of R,. Stack
the eigenvectors into the N x N, unitary matrix U e [wi,us,...,un,], and place the eigenvalues into the diagonal

matrix A & diag[A1, Aa, ..., An,]. The matrix U defines the KL transform for the signal s — it decorrelates the
correlation function R, and concentrates the signal energy into the smallest possible subspace. The range space of
U is the N;-dimensional signal subspace S in which the signal energy is confined.

In terms of the eigenexpansion, the Wiener filter (8) becomes

N
- s Ak

G, = UAUT = § T 10

k=1 Mg + 02 Wkt (10)
with \ \ \
~ def . 1 2 N

A = d = . 11

lag|:)\1+o_2:)\2+o_2a ’)\NS+0'2 ( )

The formulation (10) shows that the Wiener estimate is confined to the signal subspace & (the noise in the orthogonal
complement of S is zeroed out). Moreover, in the eigen (KL) domain, the Wiener filter takes on the diagonal form
A. In words, the Wiener filter first KL transforms the data via U7, processes each coefficient individually via the
MMSE-optimal weighting A, and then transforms the data back to the original domain via U.

Since the wavelet transform approximately decorrelates and concentrates the signal energy in a relatively small
subspace, it can serve as an approximate KL basis for a broad class of signals. This justifies the diagonal processing
of Figure 1. Wavelet shrinkage also implicitly yields an estimate of the signal subspace S via the retained wavelet
coefficients — the span of the wavelet basis functions corresponding to the nonzero coefficients is an estimate of S.
In short, wavelet shrinkage can be viewed as an approximation to the Wiener filter with U & W and A ~ H from
(5) or (6).

Consider now the wavelet shrinkage procedure of Figure 1, and suppose, without loss of generality, that the first
N; < N of the coefficients are retained by the thresholding operation (5) or (6). This can be accomplished by
sorting the wavelet coefficients in descending order of magnitude. In the hard shrinkage filter Hj, the N, weighting

coeflicients are given by
. 1, i=1,2,...,N; .
h(i) = {0. i=N,+1,N,+2,...,N, (12)

whereas the MMSE-optimal Wiener weights hy, (7) for the N;-dimensional subspace determined by the thresholding
are given by (7). The sorted weighting coefficients hy (i) and hy (¢) for the Doppler signal are shown in Figure 2(h).



Assuming a perfect subspace estimate (N, = Nj, in particular), the increase in MSE due to the approximation (12)
is given by
MSE, N;

- . 13)
MSE N, 02(s (
S w Zi:l 92(i)(+)02

Thus, the larger the variation in the signal power (relative to 0?) over the subspace, the greater the loss in performance
due to simple thresholding as opposed to optimal Wiener weighting. In general, smoother signals will have a larger
energy spread over the coefficients, resulting in a substantial loss in performance. Experiments with a variety of real
and synthetic signals indicate that significant gains in both MSE and visual quality can be achieved with the optimal
diagonal weighting.

In the next Section, we present a simple method that uses wavelet shrinkage in a bootstrap fashion to design
an empirical wavelet-domain Wiener filter that approaches a weighting profile closer to the optimal one. Such a
subspace-based Wiener filter design can yield substantially improved signal estimates as compared to more classical
wavelet shrinkage approaches.

3. WAVELET-BASED WIENER FILTERING

Recall our goal of designing a wavelet-domain diagonal Wiener filter H as in Figure 1. Suppose that only N; (the
first Ny, without loss of generality) wavelet coefficients are effectively nonzero, which define the signal subspace S.
The diagonal Wiener filter coefficients in the subspace are given by

62 (i)

hw(l) = W, 1=1,2,..., N;. (14)

To design an empirical Wiener filter, we must estimate 6%(i) and ¢? from the data. Estimating 6?(i) poses the
challenge, since for sufficiently large N a reliable estimate of 02 can be obtained from the finest scale wavelet
coefficients.?

For the ?(i) that are large compared to o2, hy (i) & 1, and thus, the Wiener filter offers little gain compared to
a (hard) thresholded estimate. On the other hand, coefficients 2 (i) that are small or comparable in size to o2 result
in hy (i) < 1 and contribute the most to the gain in MSE. This is consistent with the fact the MSE of the Wiener
filter N
~_0%(d)
MSE, = ¢° ) ——'— 1
i ' ZZ—;G?(i)H2 (19)

has the highest sensitivity at 6%(i) = 0, which decreases monotonically to zero as 6%(i) — co.

Let Ny < N be the number of large trustworthy signal coefficients 6(¢) for which hy, (i) & 1, and let Ny = Ny, — N,
be the number of small dubious signal coefficients. The (hard) thresholding procedure provides an estimate of Ni,
since it retains the high SNR (large) wavelet coefficients and zeros most of the noisy coefficients (in the process
substantially reducing the variance in the estimate). For the N; trustworthy coefficients, hy (i) & 1, and thus we can
use the simple estimate

0(i) = y(i), i=1,2,... N (16)

However, the Ny dubious signal coefficients suffer from low SNR in y, and thus it is difficult to estimate them reliably.
To obtain more trustworthy estimates of the dubious coefficients, we take a predictive approach: We predict the Ny
low SNR coefficients from the N; high SNR coefficients that can be reliably estimated via (16).

For the prediction process, we propose an indirect approach based on two (slightly) different wavelet transforms,
W and Wy, each of which is appropriate for processing the signal at hand. The procedure is illustrated in Figure 3.
The transform W is used to obtain a standard wavelet shrinkage signal estimate 8;. This estimate is based on
the Ny trustworthy wavelet coefficients (assuming hard thresholding). To implicitly obtain a reliable estimate of the
entire Ny = N; + Ny signal coefficients, we transform 8; by W to obtain

By1 = W31, (17)
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Figure 3. Wavelet-based empirical Wiener filtering. In the upper path, wavelet transform W is used to produce
the pilot signal estimate 8;. This estimate is then used to design an empirical Wiener filter, which is applied to the
original noisy signal in the Wy domain.

We call 37 the pilot estimate. The estimates @1 and @21 are related via
62 = szl_lal’ (18)

with the underlying interpretation that whereas 51 contains estimates of the NV; trustworthy coefficients, the composite
operator W2W1_1 smooths 87 to predict the remaining Ny dubious coefficients, and thus yields an estimate of the
entire Ny = N; + Ny signal coefficients. The mismatch between W and Wy guarantees that the operator Wng_1
in (18) spreads or stretches the Ny trustworthy coefficients in @1 into a larger number of nonzero coefficients in @21.
However, due to the energy compaction property, Wng_1 will not overly spread the coefficients, since both W and
W, are appropriate for the signal. Figure 2(h) illustrates the result of this implicit smoothing/stretching operation.

The estimate 521 of the signal coefficients is then used to design an empirical Wiener filter in the Wy domain via

TN @1(1)
hy (i) = el (19)

We term the resulting signal estimation procedure WienerShrink.

A key question remains: How to choose the transforms W and W 4,7 Experience with the technique has shown
the final result to be quite insensitive to the choice, so long as both W, and W, are appropriate transforms for
a classical wavelet shrinkage procedure. We have experimented with transforms employing different filter lengths,
shifted versions of the same basis, and even different schemes for dealing with boundary conditions. Current work is
aimed at an analytical characterization of the impact of the choice of basis on the performance of the algorithm.

An alternative interpretation of WienerShrink is that classical shrinkage overly shrinks the wavelet coefficients (by
retaining only the trustworthy coefficients) thereby resulting in a suboptimal weighting, whereas the WienerShrink
procedure stretches the shrunk wavelet coefficients (brings the dubious coefficients back into the picture) to design an
improved weighting profile. In this context, our method could alternatively be termed Asymmetric StretchShrink.”
Several examples of the ASST algorithm are presented in the next Section.

4. RESULTS

We begin with Donoho’s Doppler test signal as illustrated in Figure 2, which shows estimates resulting from hard
thresholding, HybridShrink, optimal Wiener filtering, and WienerShrink (based on both hard and hybrid pilots). In

*In practice, we often use a hard thresholding in the upper branch of Figure 3. Hence, to circumvent any incorrect interpretation, a
more appropriate term for the proposed algorithm, by analogy to Donoho and Johnstone’s WaveChop,* would be WienerChop.
tPatent pending.



Figure 2(h), we overlay the transfer functions (assuming sorted wavelet data) for the hard threshold, optimal Wiener
filter, and two empirical Wiener filters (both designed using the pilot estimate $; based on hard thresholding in the
wavelet basis W1 — see the upper branch of Figure 3). By applying the empirical Wiener filter in the W5 domain
(with Wy # W), we stretch its response to closely resemble the optimal Wiener filter. In contrast, by applying
the empirical Wiener filter in the W domain (by setting Wy = W), the filter cannot escape the signal subspace
estimated by the hard thresholding. Zoomed in versions of the estimates, focusing on the initial high-frequency
portion, are plotted in Figure 4.

Tables 1-4 record the bias squared, variance, and MSE results for the various estimates on Donoho’s four one-
dimensional test signals: Doppler, Heavisine, Bumps, and Blocks.! In particular, note how typically WienerShrink
decreases the bias and variance simultaneously as compared to hard thresholding alone. In contrast, the (modified)
hard threshold estimate® performs better than the HybridShrink estimate by trading bias for variance. The maximum
gain over HybridShrink is a factor of 1.95 (for Doppler), while the maximum gain over hard thresholding is a factor
of 1.62 (for Bumps).

Table 1. Algorithm performance on Doppler test signal, o = 1.

Estimator || MSE | Bias Squared | Variance
Hard threshold 0.209 0.069 0.140
WienerShrink (hard) 0.121 0.016 0.105
HybridShrink 0.274 0.169 0.105
WienerShrink (hybrid) || 0.140 0.040 0.100
Ideal Wiener 0.069 0.009 0.060

Table 2. Algorithm performance on Heavisine test signal, o = 1.

Estimator || MSE | Bias Squared | Variance
Hard threshold 0.102 0.026 0.076
WienerShrink (hard) || 0.075 0.015 0.060
HybridShrink 0.094 0.057 0.037
WienerShrink (hybrid) || 0.069 0.033 0.036
Ideal Wiener 0.037 0.008 0.029

Table 3. Algorithm performance on Bumps test signal, o = 1.

Estimator || MSE | Bias Squared | Variance
Hard threshold 0.392 0.126 0.266
WienerShrink (hard) || 0.242 0.026 0.216
HybridShrink 0.439 0.199 0.240
WienerShrink (hybrid) || 0.285 0.023 0.262
Ideal Wiener 0.183 0.026 0.157

Figures 5 and 6 compare the performance of WienerShrink to a hard threshold estimate on noisy “Lenna” and
“Boy” images. WienerShrink improves both the bias, variance, and the visual quality of the images compared to
hard thresholding. Similar results hold for soft threshold and HybridShrink estimates.

{We used the following bases for W in Figure 3. Doppler and Heavisine: Daubechies length-8 most nearly symmetric; Bumps:
standard Daubechies length-4; Blocks: Haar. For W5, we employed the Daubechies length-16 most nearly symmetric basis, except for
Blocks, where we used the Haar basis. The hard threshold in the upper branch of Figure 3 was set using a modified version of Donoho’s
rule proposed by Odegard.?
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Figure 4. Zooms of the signals from Figure 2. (a) Hard threshold, (b) HybridShrink, (c) empirical Wiener filter
based on hard threshold pilot estimate., (d) empirical Wiener filter based on HybridShrink pilot estimate, (e) optimal
Wiener filter. In each plot, the clean signal is shown dotted.



Table 4. Algorithm performance on Blocks test signal, o = 1.

Estimator || MSE | Bias Squared | Variance
Hard threshold 0.121 0.011 0.110
WienerShrink (hard) || 0.118 0.014 0.104
HybridShrink 0.226 0.085 0.141
WienerShrink (hybrid) || 0.167 0.005 0.162
Ideal Wiener 0.064 0.002 0.062

5. CONCLUSIONS

In this paper, we have presented a new scheme for wavelet denoising of signals and images that is a hybrid of standard
thresholding and empirical Wiener techniques. The resulting cooperation creates a wavelet-domain filter close to the
MSE-optimal Wiener filter. While the WienerShrink programme requires the calculation of two wavelet transforms,
the increase in performance should outweigh the slight (constant factor) increase in computational cost. We have
emphasized designing the empirical Wiener filter using the hard threshold (mainly for analytical and explanative
convenience) and HybridShrink pilot estimates; however, the WienerShrink concept can be based on any wavelet
shrinkage scheme, including soft thresholding, with similar performance gains.

Current research is directed at an analysis of the choice of W1 and W in the hybrid scheme. In particular, we
seek to understand how their mismatch affects the performance of the algorithm. The answer may lie in the theory
of frames, which have already proved useful for wavelet-based denoising.’

Several directions exist for future work on this subject. Nondiagonal Wiener filters can be used to capture
the correlations that remain between the wavelet coefficients due to the wavelet transform not being a perfect KL
transform. Such filters could be viewed as second-order variations of the work of Crouse et al.'%'! WienerShrink also
has potential in the detection, classification, and compression arenas. In particular, the subspace-based interpretation
of WienerShrink can be exploited in the estimator-correlator® formulation of optimal detectors.

Acknowledgements: The authors thank Matthew Crouse for discussions on wavelet denoising and Jazzy Jones
and Akira for pointing out the significance of the JAM in this context.
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Figure 5. Image denoising using wavelet shrinkage I. (a) 512x512 Lenna image. (b) Lenna corrupted by white Gaus-
sian noise with ¢ = 20. (c¢) Hard threshold estimate (ensemble-averaged statistics: MSE=92.44, bias squared=49.17,
variance=43.27) (d) WienerShrink estimate (MSE=61.37, bias squared=33.99, variance=27.38). Gain in MSE=1.51.
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Figure 6. Image denoising using wavelet shrinkage I1. (a) 256 x 256 Boy image. (b) Boy corrupted by white Gaussian
noise with ¢ = 10. (c) Hard threshold estimate (ensemble-averaged statistics: MSE=74.93, bias squared=>56.04,
variance=18.89). (d) WienerShrink estimate (MSE=48.07, bias squared=36.66, variance=11.41). Gain in MSE=1.56.
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