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Abstract—We study secret key generation from reciprocal ~ The second issue is identifying an accessible and appropri-
multipath wireless channels modeled as multiple paralleldding ate source of correlated randomness. The channel coefficien
channels. We consider two channel characteristics that hedy due to multipath fading in wireless communication is a widel

impact secret key capacity: channel sparsity and correlatin .
between main and eavesdropper's channels. We propose a md’deavaﬂable source of randomness. We focus on the case where

of channel sparsity where the fraction of subchannels with on- ~ transmission is reciprocal, e.g., as in time-division @xpig in
zero coefficients is specified by a sparsity parameter. For sparse  the same frequency band. In such a case, when the coherence
channels without eavesdroppers we show that at each transtter  time is sufficiently long, the reciprocity ensures that basiers
SNR y there is an optimal sparsity 0 < pope < 1 that yields the  geq the same channel (complex gains and delays). This source

maximum secret key capacity. f d ticular] Il suited o K
The reduction in secret key capacity due to eavesdropping is of common randomness appears particularly well suited yo ke

due to two sources. First is the overlap between the main and ge€neration as in rich scattering environments channelsgain
eavesdropper channels, i.e., the pattern of non-zero subahnels vary rapidly in space. Thus, an eavesdropper who is located a

common to both. The second is the correlation between the few wavelengths from either Alice or Bob will observe, more-

channel coefficients of the overlapping channels. We propesa . jass uncorrelated channel gains, ensuring the seofebg
model that captures these two effects, and characterize thmpact key ’ ’

of each by studying achieveable secret key rates. . .
We show that when the power of the training signal is However, recent measurement campaigns [6] and theoretical

uniformly distributed over the non-vanishing channels, ttere is work [7] demonstrate that wireless channels are offearse
a cutoff SNR ~. below which the secret key rate is zero, but Sych sparsity leads to increased correlation between Eve’s
non-zero (and increasing iny) when o > ~.. We also show that - ghqapyations and Alice’s and Bob's, undercutting security
in the low SNR regime, the optimal input signal is peaky (a . . .
non-uniform training signal) by which the secret key capadiy is guarantees, and reducing secret key gap_amty. The impact _Of
non-zero at all v > 0. channel sparsity on secret key capacity is the focus of this
paper.
. INTRODUCTION
Secure transmission of private message over an open chan-
nel is a critical issue in wireless communication due to the In generating secret keys from channel randomness, sound-
broadcast nature of wireless. Two approaches to physigat laing signals D}y and D' must be transmitted by Alice and
secure transmission have drawn much attention in recers.ye&ob, respectively, to excite the channel. Due to our assimampt
One approach is transmission over the wiretap channeld]L], [of a reciprocal channel law, we are in a symmetric setting,
The other approach, which we focus on in this paper, is secestd the simplifying assumption of a single sounding signal
key generation from correlated sources of randomness4B], [Di = Dj} = D™ can be made. The main difference
Two issues arise in implementing key generation frorinom [3], [4] is the design of this sounding signal. In [8] we
common randomness. The first is the design of a protociow the the secret key capacity of a memoryless channel
between legitimate users Alice and Bob so that the key canpgr y» z»p»(z",y", 2"[d") = T, Px,v,z|D(Ti, Yi, 2ild;)
generated secretly and reliably. When discussion overramn-er is
free public channel (reconciliation) is allowed, [3], [4jaw Crey = max |I[(X;Y|D)—I(X;Z|D)|* (1)
that though distributed source coding techniques [5] Adind Poen
Bob can generate a common key at a non-zero rate whilbere (i) |z|T = max{z, 0}, (i) X, Y, Z represent the
leaking negligible information to an eavesdropper Eve. Thabservations of Alice, Bob and Eve, respectively, (iii) the
supremum of achievable secret key rates is skeret key maximization is taken over the input distribution that sfis
capacity the power constrairf®p = {Pp : E[|D|?] < £}.

II. BACKGROUND AND PRIOR WORK



Regarding previous work on secret key generation frof,., and S,., are defined similarly for Eve’s channels and
multipath fading, [9], [10] consider straight quantizatiof |S,.,| = |Ssc,| = pn for the same parameter We assume
the phase difference of channel outputs, but do not inctudithat Pr[i € S,,] = p for all i wherei is the index of a
the de-noising effect of the public discussion of [3], [4h e particular sub-channel.
other hand, [9] applies coding to reduce the error prokgbili
while [10] analyzes the minimum energy required for kef. Correlation between sparsity patterns

acquisition. Further, [11] considers ultrawideband clesin We introduce paramete[ﬁ7q2 to characterize the Over|ap

where the amplitude of time delay channel serves as the@oUsgtween the sparsity patterns of the main and eavesdropper
of randomness. Regarding generic Gaussian models, [B], [thannels. In particular

study key generation from jointly Gaussian sources where
LDPC coding is used in [12] and [13] uses nested lattice codes Pr(i € Sue,li € San) = @ (2a)
and vector quantization for de-noising. Finally, [14] disses Pr(i € Sue,|i € Sap) g2 (2b)
the minimum energy per secret key bit and shows that the
optimal input distributionPp, is peaky in the low SNR regime. for all 1 <@ <n.
All this prior work is subject to the assumption that the i .
eavesdropper channel is statistically independent of tammC- Correlation between channel coefficients
channel. Thus, the penalty term in (1), due to the correlatedwe model the correlation between overlapped channel co-
eavesdropper observation, is zero. On the other hand, sn téfficients as

paper, we propose models of channel sparsity and eavesdrop- he, = Mh+4/1— )\%el , (3a)
per correlation and quantify the impact on secret key capaci .

hey = Xah+ /1= M\3h,, . (3b)
[1l. M ODELING OF MAIN AND EAVESDROPPER CHANNELS

Consider a wireless system consisting ofindependent whereh, ., h., are i.i.d.CA (0,0?). Eve's channel coeffi-
parallel fading channels. To generate a secret key from a féents consist of two parts: one perfectly correlated with t
ciprocal wireless channel, Alice and Bob each send a trginimain channeh and another that is uncorrelated with The
sequence through the channel. Suppose the channel is seaitelation coefficient betweel., (resp.h.,) andh is
over two uses of the channel. The channel outputsi-tin X

Elhe, h*]
subchannel are J

=)\, forj=1,2.

Ellhe; [P E[|R[?]
X(i) = hq(i)d(i) + Na(i) o
. . where0 < A\; < 1 (resp.)z2). To simplify the problem, we

V(i) = he(i)d(i) + No(i) assume that for all subchannéls S, NSee;, h(i) andhe, ()

Z1(i) = he, (i)d(i) + Ne, (i) have the sama; for j = 1,2.

Zo(i) = hey()d(i) + Ney(4) We now express the channel coefficients in matrix form
where X (i), Y (i), i = 1,--- ,n, are the channel outputs for ha 1 0 0 A
Alice and Bob, respectively. The channel coefficient of ithe he | 1 0 0 3
subchannel ish, (i) = hy(i) = h(i) andd(i) is the training he, | | M V1=X2 0 L
symbol transmitted over that subchannel. Re, A2 0 NI he,

Eve has two observatiors (i), Z»(i) corresponding to the
respective channel outputs when Alice and Bob send training
symbols. Finally,N,, N,, N,, for j = 1,2 are independent For a deterministic input training symbé) = d (i.e., D = d
and identically distributed (i.i.d.) random variab@s’ (0,02) With probability one), the channel outputs are
corresponding to observation noise.

A

Based on the correlated observations Xf and Y, the X Ah ]X]‘l

number of key bits that Alice and Bob can generate while =dA | he |+ Nb ~CN (0,K.yz) (4)
keeping Eve in the dark depends on how much informatio Z; ;Lez Ne1
ez

abouth Eve can deduce based on her observationsZ, and
the public message. where
Koy = Eo?AAT + 021

A. Modelling channel sparsit
g p y 1+0%y o2y Aoy Aoy

For chapnels that_ exhibits spa.rsity, the physical paths are e o2y 1402y Aoy Aoo2y
clustered in a fractional dimension represented by the ba- = %» Moy Moy 1402y Moy
sis functions (e.g., time delays) [7]. Among subchannels, M2y Aoy AMAeo?y 1402y

let pn subchannels have non-vanishing independent channel
coefficients. LetS,, = {i : E[|h(i)|’] > 0} denotes the & = |d|? is the training symbol power angl = % is the
sparsity pattern(SP) of the main channel whe{&,;,| = pn. transmitted SNR. "



IV. SECRETKEY CAPACITY OF PARALLEL FADING distribution
CHANNELS * D—=d
| _ - m={ . Doh ©)
To quantify the secret key capacity and the optimal input Ky =0
distribution, we first consider the secret key rate with d‘%\'/hereu* — min(1,~/7*) and~* is the positive root of
terministic training signaling and define following furmtis: ’
Iab(O'Q’y) £ I(X7 Y|d)’ Iaej (0-27) £ I(X7 Z7|d)! forj = 17 2, Ia ('Y) =- dIab(’}/) , (7)
and I,e,.,(0%y) 2 I(X; Z,Z,|d). For the Gaussian model dy
in (4), thgse functions can be expressed in. termsxqu/\g which can be solved for numerically. When> ~*, u* =1,
and received SNRr*y. The secret key capacity is found bythe optimal input is deterministic and therefore has a unifo
optimizing over the input distribution’p subject to power power distribution over. channels. When < +*, the optimal
constraint. In most cases, Alice/Bob can learn the sparsjput is a type of peaky on-off signaling, cf. (6). The reswt

pattern of the main channel by an additional measuremejeicret key capacity per channel degree of freedom (DoF)
[15] but not the sparsity patterns of Eve’s channels. Vifith

information, the total training signal power is distribdtéo Crey (V) = 1 Lup (l*) (8)
|Sas| = pn dimensions so that the transmitted SNR in each H

non-vanishing dimension is increased by a fadtgp. Since is a convex-down function.

there is no knowledge of Eve’s sparsity patterns, the ratidin 2) Sparse channelsFrom the first term of (5), wheg, =
of Sge, andS,., becomes the unknowstate of the system. ¢, = 0, the achievable key rate for< 1 is

The achievable key rate per dimension is, averaging over all o2y

states, Ruiey(7) = plap (7) 9)

2
Riey(7) =1 —q1)(1 — g2)plap (ﬂ) Due to the convexity of () in low SNR, there is an optimal
p

+ q1q2p

) ) operating sparsityp,,¢ at which the deterministic signaling
+a(l—g)p (Iab (ﬂ) — I, (U_)) has_ thg highest rate. To charapteryzgh two chann_el nor-
P p malizationo2, which affect received SNR, are considered:

(1= q)gep (Iab (02_7) _I. (ﬂ)) () Casec? = 1: From the similarity between (9) and (8),
p \ p we can gepopt = min(1,v/v*) wherey* is the solution

o2y o2y + of (7). The signal with power distributing over the non-

Lap (—> — laeyes <—) . (5) vanishing dimensiopn is equivalent to the peaky signal

P P in (6) (whereu* = popt). Thus, the key rate thai,p:

In the following, we first look the case without an eaves-  can achieved is the same as (8) and, therefore, is the
dropper to investigate the effect of channel sparsity. Two secret key capacity. Fig. 1(a) shols., () for various
possible channel normalizations are discussed= 1 and p and the curve correspondipgy. Fig. 1(c) showgp
0? = 1/p. Each normalization corresponds to a way in which  as function of SNR.
the sparse channel can be formed. In Sec. V we give exampl¢§ Caseo? = 1/p: This is the case that the total channel
to show that both cases are physically possible. In the first power is preserved when the channel DoF decreases. The

case, rich 6 = 1) and sparseg( < 1) channels, respectively optimal operating sparsity is obtained by maximizing (9)
correspond to two physical channels with different delay

spreads represented in a system with fixed signal bandwidth. Popt = arg max plgp (12) .

The second case correspond to the same physical channel 0=psl P

represented by signals with different bandwidths. Take the derivative with respect pato find the stationary

We then look at the case where there is an eavesdropper point, we have
present and study the impact of channel coefficient coroslat

1

(A1, A2) and sparsity correlationy{, ¢2). Finally, the optimal Popt = min (1’ (l) 2) (10)
input distribution needed to find the secret key capacity is *
discussed. where~* is the solution of the equation
A. Sec.ret Key. Capacity WIthO.Ut Eavesdropper | Lp(7) = 27 - dL:ib(W) _ (11)

1) Rich fading channelsWithout the loss of generality, 2
assume that in rich channelg & 1), the power of each Substituting into (9), the resulting secret key is convex-u
subchannel is normalized t0> = 1. In [14] it is shown function and is proportional tg'/? for v < ~*. Fig. 1(b)
that for a deterministic signalind, the achievable secret key and 1(d) show these results. Comparing with= 1, the
function Riey(y) = I.s(7y) is convex-up at low SNR and received SNR in this case is increasediby due to the
convex-down at high SNR. It also shows that for anythe channel power conservatiop,p; in (10) is the optimal

capacity achieving input training signal wiffi[| D|?] < £ has trade-off between the Dokp (< 1) and the received SNR
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Proposition 1: When the total training signal power is

uniformly distributed over the non-zero channels,

per DoF which consists of transmitted SNR {//p) and 12 2
. | 0, if A+A3<1
channel power« 1/p). The result is pronounced in low e =
SNR (the power-limited regime). In Sec. V, we show that ' % (W — 1) , F A2+ >1
1 2

the sparse channel correspondingoto = 1/p can be
obtained by controlling signal bandwidth. Therefore, theq proof is by finding the root Qfab(ﬁ)_laeleg(ﬁ)-
secret key rate corresponding g, (10) is achievable. 2) Impact of sparsity pattern correlationErom (5)p, Ricey
B. Secret key capacity with eavesdropper consists of four terms that correspond to the secret key rate
' in four different states. Different state have differenteleof
1) Impact of channel coefficient correlatiomook the last secret key rate loss. Among the main channel PoF(q1, ¢)
term of (5) which captures the effect of channel coefficieraptures the number of DoF in each state. Thus, the sparsity
correlation (A1, A2). This corresponds to the case tf#t;, pattern correlation characterizes the effective DoF thiateA
Jj = 1,2, fully overlaps withSu, (.e.q1 = g2 = 1). The and Bob can exploit.
loss term due to the presence of an eavesdropper can bg) Optimal input distribution: From previous discussions,
approximated as we know that when the channel power normalization?s= 1
) ) ( 1-2222 ) Hioh SNR tr_le Ricey is re§tricted ity < Ye- On_ thg ot_her har_ld, _the.peaky
pLaeres (ﬂ) ~J P8 TN (-x3) ) g signaling (6) is the capacity achieving input distributiand
P (N2 + )\g)%, Low SNR the improvement is significant in the low SNR. It can be shown
that each term of (5) is convex-up in the low SNR and convex-
Note that in high SNR, the loss is limited (it does not inceeagjown in the high SNR. So the linear combinati., (v)
in 7) as long as\; and\, are both strictly less than one. Thishas the same property. In additional &, if Alice/Bob
can be explained by looking (3) and (4), Eve has two typgpow the parametergii, ) and (qi,q2), they can find
of noise regarding estimating One is the observation noisegn optimal ;*-peaky signaling by solving the optimization
Ne;, the other is the uncotrelated sourkg . In high SNR, |« — arg max,, Mchy(%)- Theny* is the root of an equation
the N, is negligible whileh,; is amplified by the training similar to (7) by replacingl,,(-) with Riey(-) Wherey, p,
symbol power. This limits the information aboutthat Eve (A1, A2) and (¢, ¢2) are involved. Solvingu* numerically,
can learn. We have secret key rate in both regimes we get the non-zero secret key capacity for-alb 0. Fig. 2
(1-32)(1-22) 42\ | . presentsRiey () with_optimal inpu_t ;igna_ling. In particplar,
Riey(7) = P ‘10g (W 2—2,3)2‘ , High SNR when \? + \3 > 1, using peaky training signal can achieve a
' 11— (2 +23)" 221 LowSNR  NON-ZErORiey(y) for v <. .
For the caser? = 1/p, as we have discussed before (and
Fig. 2 shows the key rate in the presence of Eve whenl, s detailed in Sec. V), we are able to control the sparsity
0% =1 and\; = A2 = \. We can see that for largk, there The secret key capacity is achieved by operating the system
is a cutoff SNRy. so thatRiey = 0 for v < 7. The next ith optimal p.,; (10). The optimal input power allocation is
proposition quantifies the relationship 8f, > and~, uniform overp,,.n channels.



V. DISCUSSION is proportional tol/W. From (12) and (14), we also have
. o 2 _ 2 _
We have discussed two power normalizations for sparééfh =0 = L. ]

multipath channelss? = 1 ando? = 1/p. We now provide a In this case, a rich and a sparse channel correspond to the
justification for these. The first represents channel sargpti  S2Me Physmal channel sampled through different signad-ban
frequency, as in an OFDM system, and sparsity corresporf¥§lthS:Wrich > Wipasse. We have the following interpretation
to two different channels. The second represents chanffdl the sparsity parameter
sampling in delay, as in a spread-spectrum system, andtypars Lsparse  Weparse

corresponds to the same channel observed through different Lo Waa ' <1

signal bandwidths. which also reflects the ratio between the power in the sampled
Regarding the first case? = 1, consider an OFDM system he's in the two cases:

with a fixed bandwidthi//, and a frequency selective fading 9
channel whose frequency response can be modeled as Uh,;parsc _ Which _ 1
Npatn Oh,rich Wiparse P
H(f)= Z Be 127 mt In this case, number of independent coefficiehtDoF) gets
m=1 smaller for a sparse channel but the power per DoF gets

where N,..;, is the total number of paths, each path has &fnPlified to keep the total channel power constant.
independent complex gaif,, and delayr,. Let 7. denote This case shows that we can transform a fixed physical chan-

the channel delay spread. In this case, the channel coafficid!€! iNt0 @ sparse channel by changing the signal bandwidth.

for secret key generated are obtained by sampiifig)) and As a consequence, we have the ability to control the sparsity
each sample has the same variance parametep. Thus, the secret key rate curve corresponding to

Npath Popt IN Fig. 1(b) is achievable and, therefore, is the secret key
E[H(HP)= > ElBnl?l=0"=1 (12) capacity of the system.
m=1
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