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Abstract—We study secret key generation from reciprocal
multipath wireless channels modeled as multiple parallel fading
channels. We consider two channel characteristics that heavily
impact secret key capacity: channel sparsity and correlation
between main and eavesdropper’s channels. We propose a model
of channel sparsity where the fraction of subchannels with non-
zero coefficients is specified by a sparsity parameterρ. For sparse
channels without eavesdroppers we show that at each transmitter
SNR γ there is an optimal sparsity 0 ≤ ρopt ≤ 1 that yields the
maximum secret key capacity.

The reduction in secret key capacity due to eavesdropping is
due to two sources. First is the overlap between the main and
eavesdropper channels, i.e., the pattern of non-zero subchannels
common to both. The second is the correlation between the
channel coefficients of the overlapping channels. We propose a
model that captures these two effects, and characterize theimpact
of each by studying achieveable secret key rates.

We show that when the power of the training signal is
uniformly distributed over the non-vanishing channels, there is
a cutoff SNR γc below which the secret key rate is zero, but
non-zero (and increasing inγ) when γ > γc. We also show that
in the low SNR regime, the optimal input signal is peaky (a
non-uniform training signal) by which the secret key capacity is
non-zero at all γ > 0.

I. I NTRODUCTION

Secure transmission of private message over an open chan-
nel is a critical issue in wireless communication due to the
broadcast nature of wireless. Two approaches to physical layer
secure transmission have drawn much attention in recent years.
One approach is transmission over the wiretap channel [1], [2].
The other approach, which we focus on in this paper, is secret
key generation from correlated sources of randomness [3], [4].

Two issues arise in implementing key generation from
common randomness. The first is the design of a protocol
between legitimate users Alice and Bob so that the key can be
generated secretly and reliably. When discussion over an error-
free public channel (reconciliation) is allowed, [3], [4] show
that though distributed source coding techniques [5] Aliceand
Bob can generate a common key at a non-zero rate while
leaking negligible information to an eavesdropper Eve. The
supremum of achievable secret key rates is thesecret key
capacity.

The second issue is identifying an accessible and appropri-
ate source of correlated randomness. The channel coefficients
due to multipath fading in wireless communication is a widely
available source of randomness. We focus on the case where
transmission is reciprocal, e.g., as in time-division duplexing in
the same frequency band. In such a case, when the coherence
time is sufficiently long, the reciprocity ensures that bothusers
see the same channel (complex gains and delays). This source
of common randomness appears particularly well suited to key
generation as in rich scattering environments channel gains
vary rapidly in space. Thus, an eavesdropper who is located a
few wavelengths from either Alice or Bob will observe, more-
or-less, uncorrelated channel gains, ensuring the secrecyof the
key.

However, recent measurement campaigns [6] and theoretical
work [7] demonstrate that wireless channels are oftensparse.
Such sparsity leads to increased correlation between Eve’s
observations and Alice’s and Bob’s, undercutting security
guarantees, and reducing secret key capacity. The impact of
channel sparsity on secret key capacity is the focus of this
paper.

II. BACKGROUND AND PRIOR WORK

In generating secret keys from channel randomness, sound-
ing signalsDn

a and Dn
b must be transmitted by Alice and

Bob, respectively, to excite the channel. Due to our assumption
of a reciprocal channel law, we are in a symmetric setting,
and the simplifying assumption of a single sounding signal
Dn

a = Dn
b = Dn can be made. The main difference

from [3], [4] is the design of this sounding signal. In [8] we
show the the secret key capacity of a memoryless channel
pXn,Y n,Zn|Dn(xn, yn, zn|dn) =

∏n
i=1 pX,Y,Z|D(xi, yi, zi|di)

is
Ckey = max

PD∈ΩD

|I(X ; Y |D) − I(X ; Z|D)|+ (1)

where (i) |x|+ = max{x, 0}, (ii) X , Y , Z represent the
observations of Alice, Bob and Eve, respectively, (iii) the
maximization is taken over the input distribution that satisfies
the power constraintΩD = {PD : E[|D|2] ≤ E}.



Regarding previous work on secret key generation from
multipath fading, [9], [10] consider straight quantization of
the phase difference of channel outputs, but do not including
the de-noising effect of the public discussion of [3], [4]. On the
other hand, [9] applies coding to reduce the error probability
while [10] analyzes the minimum energy required for key
acquisition. Further, [11] considers ultrawideband channels
where the amplitude of time delay channel serves as the source
of randomness. Regarding generic Gaussian models, [12], [13]
study key generation from jointly Gaussian sources where
LDPC coding is used in [12] and [13] uses nested lattice codes
and vector quantization for de-noising. Finally, [14] discusses
the minimum energy per secret key bit and shows that the
optimal input distributionPD is peaky in the low SNR regime.

All this prior work is subject to the assumption that the
eavesdropper channel is statistically independent of the main
channel. Thus, the penalty term in (1), due to the correlated
eavesdropper observation, is zero. On the other hand, in this
paper, we propose models of channel sparsity and eavesdrop-
per correlation and quantify the impact on secret key capacity.

III. M ODELING OF MAIN AND EAVESDROPPER CHANNELS

Consider a wireless system consisting ofn independent
parallel fading channels. To generate a secret key from a re-
ciprocal wireless channel, Alice and Bob each send a training
sequence through the channel. Suppose the channel is static
over two uses of the channel. The channel outputs oni-th
subchannel are

X(i) = ha(i)d(i) + Na(i)

Y (i) = hb(i)d(i) + Nb(i)

Z1(i) = he1
(i)d(i) + Ne1

(i)

Z2(i) = he2
(i)d(i) + Ne2

(i)

whereX(i), Y (i), i = 1, · · · , n, are the channel outputs for
Alice and Bob, respectively. The channel coefficient of theith
subchannel isha(i) = hb(i) = h(i) and d(i) is the training
symbol transmitted over that subchannel.

Eve has two observationsZ1(i), Z2(i) corresponding to the
respective channel outputs when Alice and Bob send training
symbols. Finally,Na, Nb, Nej

, for j = 1, 2 are independent
and identically distributed (i.i.d.) random variablesCN

(
0, σ2

n

)

corresponding to observation noise.
Based on the correlated observations ofX and Y , the

number of key bits that Alice and Bob can generate while
keeping Eve in the dark depends on how much information
abouth Eve can deduce based on her observationsZ1, Z2 and
the public message.

A. Modelling channel sparsity

For channels that exhibits sparsity, the physical paths are
clustered in a fractional dimension represented by the ba-
sis functions (e.g., time delays) [7]. Amongn subchannels,
let ρn subchannels have non-vanishing independent channel
coefficients. LetSab = {i : E[|h(i)|2] > 0} denotes the
sparsity pattern(SP) of the main channel where|Sab| = ρn.

Sae1
and Sae2

are defined similarly for Eve’s channels and
|Sae1

| = |Sae2
| = ρn for the same parameterρ. We assume

that Pr[i ∈ Sav] = ρ for all i where i is the index of a
particular sub-channel.

B. Correlation between sparsity patterns

We introduce parametersq1, q2 to characterize the overlap
between the sparsity patterns of the main and eavesdropper
channels. In particular

Pr(i ∈ Sae1
|i ∈ Sab) = q1 (2a)

Pr(i ∈ Sae2
|i ∈ Sab) = q2 (2b)

for all 1 ≤ i ≤ n.

C. Correlation between channel coefficients

We model the correlation between overlapped channel co-
efficients as

he1
= λ1h +

√

1 − λ2
1ĥe1

, (3a)

he2
= λ2h +

√

1 − λ2
2ĥe2

. (3b)

whereh, ĥe1
, ĥe2

are i.i.d.CN
(
0, σ2

)
. Eve’s channel coeffi-

cients consist of two parts: one perfectly correlated with the
main channelh and another that is uncorrelated withh. The
correlation coefficient betweenhe1

(resp.he2
) andh is

E[hej
h∗]

√
E[|hej

|2]E[|h|2]
= λj , for j = 1, 2.

where0 ≤ λ1 ≤ 1 (resp.λ2). To simplify the problem, we
assume that for all subchannelsi ∈ Sab∩Saej

, h(i) andhej
(i)

have the sameλj for j = 1, 2.
We now express the channel coefficients in matrix form






ha

hb

he1

he2







=







1 0 0
1 0 0

λ1

√

1 − λ2
1 0

λ2 0
√

1 − λ2
2
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ĥe2



 .

For a deterministic input training symbolD = d (i.e., D = d
with probability one), the channel outputs are






X
Y
Z1

Z2







= dA





h

ĥe1

ĥe2



+







Na

Nb

Ne1

Ne2







∼ CN (0,Kxyz) (4)

where
Kxyz = Eσ2

AA
H + σ2

nI

= σ2
n







1 + σ2γ σ2γ λ1σ
2γ λ2σ

2γ
σ2γ 1 + σ2γ λ1σ

2γ λ2σ
2γ

λ1σ
2γ λ1σ

2γ 1 + σ2γ λ1λ2σ
2γ

λ2σ
2γ λ2σ

2γ λ1λ2σ
2γ 1 + σ2γ







E = |d|2 is the training symbol power andγ = E
σ2

n
is the

transmitted SNR.



IV. SECRET KEY CAPACITY OF PARALLEL FADING

CHANNELS

To quantify the secret key capacity and the optimal input
distribution, we first consider the secret key rate with de-
terministic training signaling and define following functions:
Iab(σ

2γ) , I(X ; Y |d), Iaej
(σ2γ) , I(X ; Zj|d), for j = 1, 2,

and Iae1e2
(σ2γ) , I(X ; Z1Z2|d). For the Gaussian model

in (4), these functions can be expressed in terms ofλ1, λ2

and received SNRσ2γ. The secret key capacity is found by
optimizing over the input distributionPD subject to power
constraint. In most cases, Alice/Bob can learn the sparsity
pattern of the main channel by an additional measurement
[15] but not the sparsity patterns of Eve’s channels. WithSab

information, the total training signal power is distributed to
|Sab| = ρn dimensions so that the transmitted SNR in each
non-vanishing dimension is increased by a factor1/ρ. Since
there is no knowledge of Eve’s sparsity patterns, the realization
of Sae1

andSae2
becomes the unknownstateof the system.

The achievable key rate per dimension is, averaging over all
states,

Rkey(γ) = (1 − q1)(1 − q2)ρIab

(
σ2γ

ρ

)

+ q1(1 − q2)ρ

(

Iab

(
σ2γ

ρ

)

− Iae1

(
σ2γ

ρ

))

+ (1 − q1)q2ρ

(

Iab

(
σ2γ

ρ

)

− Iae2

(
σ2γ

ρ

))

+ q1q2ρ

∣
∣
∣
∣
Iab

(
σ2γ

ρ

)

− Iae1e2

(
σ2γ

ρ

)∣
∣
∣
∣

+

. (5)

In the following, we first look the case without an eaves-
dropper to investigate the effect of channel sparsity. Two
possible channel normalizations are discussed,σ2 = 1 and
σ2 = 1/ρ. Each normalization corresponds to a way in which
the sparse channel can be formed. In Sec. V we give examples
to show that both cases are physically possible. In the first
case, rich (ρ = 1) and sparse (ρ < 1) channels, respectively
correspond to two physical channels with different delay
spreads represented in a system with fixed signal bandwidth.
The second case correspond to the same physical channel
represented by signals with different bandwidths.

We then look at the case where there is an eavesdropper
present and study the impact of channel coefficient correlation
(λ1, λ2) and sparsity correlation (q1, q2). Finally, the optimal
input distribution needed to find the secret key capacity is
discussed.

A. Secret Key Capacity without Eavesdropper

1) Rich fading channels:Without the loss of generality,
assume that in rich channels (ρ = 1), the power of each
subchannel is normalized toσ2 = 1. In [14] it is shown
that for a deterministic signalingd, the achievable secret key
function Rkey(γ) = Iab(γ) is convex-up at low SNR and
convex-down at high SNR. It also shows that for anyγ, the
capacity achieving input training signal withE[|D|2] ≤ E has

distribution

PD =

{
µ∗, D = d

1 − µ∗, D = 0
, (6)

whereµ∗ = min(1, γ/γ∗) andγ∗ is the positive root of

Iab(γ) = γ · dIab(γ)

dγ
, (7)

which can be solved for numerically. Whenγ ≥ γ∗, µ∗ = 1,
the optimal input is deterministic and therefore has a uniform
power distribution overn channels. Whenγ < γ∗, the optimal
input is a type of peaky on-off signaling, cf. (6). The resulting
secret key capacity per channel degree of freedom (DoF)

Ckey(γ) = µ∗Iab

(
γ

µ∗

)

(8)

is a convex-down function.
2) Sparse channels:From the first term of (5), whenq1 =

q2 = 0, the achievable key rate forρ < 1 is

Rkey(γ) = ρIab

(
σ2γ

ρ

)

(9)

Due to the convexity ofIab(·) in low SNR, there is an optimal
operating sparsityρopt at which the deterministic signaling
has the highest rate. To characterizeρopt, two channel nor-
malizationσ2, which affect received SNR, are considered:

(i) Caseσ2 = 1: From the similarity between (9) and (8),
we can getρopt = min(1, γ/γ∗) whereγ∗ is the solution
of (7). The signal with power distributing over the non-
vanishing dimensionρn is equivalent to the peaky signal
in (6) (whereµ∗ = ρopt). Thus, the key rate thatρopt

can achieved is the same as (8) and, therefore, is the
secret key capacity. Fig. 1(a) showsRkey(γ) for various
ρ and the curve correspondingρopt. Fig. 1(c) showsρopt

as function of SNR.
(ii) Caseσ2 = 1/ρ: This is the case that the total channel

power is preserved when the channel DoF decreases. The
optimal operating sparsity is obtained by maximizing (9)

ρopt = arg max
0≤ρ≤1

ρIab

(
γ

ρ2

)

.

Take the derivative with respect toρ to find the stationary
point, we have

ρopt = min

(

1,

(
γ

γ∗

) 1

2

)

(10)

whereγ∗ is the solution of the equation

Iab(γ) = 2γ · dIab(γ)

dγ
. (11)

Substituting into (9), the resulting secret key is convex-up
function and is proportional toγ1/2 for γ < γ∗. Fig. 1(b)
and 1(d) show these results. Comparing withσ2 = 1, the
received SNR in this case is increased by1/ρ due to the
channel power conservation.ρopt in (10) is the optimal
trade-off between the DoF (ρ < 1) and the received SNR



−30 −20 −10 0 10 20 30
10

−6

10
−4

10
−2

10
0

10
2

SNR (dB)

R
ke

y (
bi

ts
/d

im
en

si
on

)

 

 

ρ = 1 (rich)
ρ = 0.1
ρ = 0.01
ρ

opt

(a)

−30 −20 −10 0 10 20 30
10

−6

10
−4

10
−2

10
0

10
2

SNR (dB)

R
ke

y (
bi

ts
/d

im
en

si
on

)

 

 

ρ = 1 (rich)
ρ = 0.1
ρ = 0.01
ρ

opt

(b)

−30 −20 −10 0 10 20 30
0

0.2

0.4

0.6

0.8

1

SNR (dB)

ρ op
t

ρ
opt

 ∝  γ

(c)

−30 −20 −10 0 10 20 30
0

0.2

0.4

0.6

0.8

1

SNR (dB)

ρ op
t

ρ
opt

 ∝  γ1/2

(d)

Fig. 1. Secret key rate of sparse channel. (a)Rkey for σ2 = 1 (b) Rkey

for σ2 = 1/ρ (c) ρopt for σ2 = 1 (d) ρopt for σ2 = 1/ρ

per DoF which consists of transmitted SNR (∝ γ/ρ) and
channel power (∝ 1/ρ). The result is pronounced in low
SNR (the power-limited regime). In Sec. V, we show that
the sparse channel corresponding toσ2 = 1/ρ can be
obtained by controlling signal bandwidth. Therefore, the
secret key rate corresponding toρopt (10) is achievable.

B. Secret key capacity with eavesdropper

1) Impact of channel coefficient correlation:Look the last
term of (5) which captures the effect of channel coefficient
correlation(λ1, λ2). This corresponds to the case thatSaej

,
j = 1, 2, fully overlaps withSab (i.e.,q1 = q2 = 1). The
loss term due to the presence of an eavesdropper can be
approximated as

ρIae1e2

(
σ2γ

ρ

)

≈







ρ log
(

1−λ2

1
λ2

2

(1−λ2

1
)(1−λ2

2
)

)

, High SNR

(λ2
1 + λ2

2)
(σ2γ)2

ρ , Low SNR

Note that in high SNR, the loss is limited (it does not increase
in γ) as long asλ1 andλ2 are both strictly less than one. This
can be explained by looking (3) and (4), Eve has two types
of noise regarding estimatingh. One is the observation noise
Nej

, the other is the uncorrelated sourceĥej
. In high SNR,

the Nej
is negligible while ĥej

is amplified by the training
symbol power. This limits the information abouth that Eve
can learn. We have secret key rate in both regimes

Rkey(γ) ≈







ρ
∣
∣
∣log

(
(1−λ2

1
)(1−λ2

2
)

(1−λ2

1
λ2

2
)

σ2γ
2ρ

)∣
∣
∣

+

, High SNR
∣
∣1 − (λ2

1 + λ2
2)
∣
∣
+ (σ2γ)2

ρ , Low SNR

Fig. 2 shows the key rate in the presence of Eve whenρ = 1,
σ2 = 1 and λ1 = λ2 = λ. We can see that for largeλ, there
is a cutoff SNRγc so thatRkey = 0 for γ < γc. The next
proposition quantifies the relationship ofλ1, λ2 andγc
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Fig. 2. Secret key rate with correlated eavesdropper.(q1, q2) = (1, 1),
ρ = 1, λ1 =λ2 =λ, σ2 =1. DI=“Deterministic Input”, OI=“Optimal Input”

Proposition 1: When the total training signal power is
uniformly distributed over the non-zero channels,

γc =







0, if λ2
1 + λ2

2 ≤ 1

ρ
σ2

(

λ1λ2√
(1−λ2

1
)(1−λ2

2
)
− 1

)

, if λ2
1 + λ2

2 > 1
.

The proof is by finding the root ofIab(
σ2γ

ρ )−Iae1e2
(σ2γ

ρ ).
2) Impact of sparsity pattern correlation:From (5),Rkey

consists of four terms that correspond to the secret key rate
in four different states. Different state have different level of
secret key rate loss. Among the main channel DoFρn, (q1, q2)
captures the number of DoF in each state. Thus, the sparsity
pattern correlation characterizes the effective DoF that Alice
and Bob can exploit.

3) Optimal input distribution:From previous discussions,
we know that when the channel power normalization isσ2 = 1
the Rkey is restricted ifγ < γc. On the other hand, the peaky
signaling (6) is the capacity achieving input distributionand
the improvement is significant in the low SNR. It can be shown
that each term of (5) is convex-up in the low SNR and convex-
down in the high SNR. So the linear combinationRkey(γ)
has the same property. In additional toSab, if Alice/Bob
know the parameters(λ1, λ2) and (q1, q2), they can find
an optimal µ∗-peaky signaling by solving the optimization
µ∗ = argmaxµ µRkey(

γ
µ). Thenµ∗ is the root of an equation

similar to (7) by replacingIab(·) with Rkey(·) where γ, ρ,
(λ1, λ2) and (q1, q2) are involved. Solvingµ∗ numerically,
we get the non-zero secret key capacity for allγ > 0. Fig. 2
presentsRkey(γ) with optimal input signaling. In particular,
whenλ2

1 + λ2
2 > 1, using peaky training signal can achieve a

non-zeroRkey(γ) for γ < γc.
For the caseσ2 = 1/ρ, as we have discussed before (and

is detailed in Sec. V), we are able to control the sparsityρ.
The secret key capacity is achieved by operating the system
with optimalρopt (10). The optimal input power allocation is
uniform overρoptn channels.



V. D ISCUSSION

We have discussed two power normalizations for sparse
multipath channels:σ2 = 1 andσ2 = 1/ρ. We now provide a
justification for these. The first represents channel sampling in
frequency, as in an OFDM system, and sparsity corresponds
to two different channels. The second represents channel
sampling in delay, as in a spread-spectrum system, and sparsity
corresponds to the same channel observed through different
signal bandwidths.

Regarding the first case,σ2 = 1, consider an OFDM system
with a fixed bandwidthW , and a frequency selective fading
channel whose frequency response can be modeled as

H(f) =

Npath∑

m=1

βme−j2πτmf

whereNpath is the total number of paths, each path has an
independent complex gainβm and delayτm. Let τmax denote
the channel delay spread. In this case, the channel coefficients
for secret key generated are obtained by samplingH(f) and
each sample has the same variance

E[|H(f)|2] =

Npath∑

m=1

E[|βm|2] = σ2 = 1 (12)

In order to get independent channel samples, the samples must
be separated by channel coherence bandwidth,Wc ∝ 1

τmax

.
For a given system bandwidthW , the number of independent
channel coefficients (DoF) isNind = W

Wc
∝ τmax.

In this case, a rich and a sparse channel correspond to two
channels with different delay spreads:τmax,rich > τmax,sparse.
Thus, we have the following interpretation for the sparsity
parameterρ

Nind,sparse

Nind,rich
=

τmax,sparse

τmax,rich
= ρ < 1 (13)

From (12) and (13), the sparse channel has fewer DoF (ρ < 1)
while it maintains the same channel power per DoF (σ2 = 1).
As a result the total channel power (in all DoF) is smaller for
sparse channels.

Regarding the second case,σ2 = 1/ρ, consider a spread-
spectrum system (e.g, a CDMA system) with bandwidthW
in which the independent channel coefficients are obtained by
sampling the channel in the delay domain with a resolution
∆τ = 1/W . The sampled representation of the physical
channel at this resolution is

H(f) =

Npath∑

m=1

βme−j2πτmf
≈

L−1∑

ℓ=0

hℓe
−j2π ℓ

W
f (14)

where L = ⌈τmaxW ⌉ is the number of resolvable delays
within the delay spread andhℓ’s represent the sampled channel
coefficients in the spread-spectrum. Eachhℓ is related to the
physical path gains as,hℓ ≈ ∑

Sτ,l
βm, and is thus the sum

of all βm whose delays located in theℓ-th delay resolution
bin Sτ,l = {m : τm ∈ (l/W − 1/2W, l/W + 1/2W ]}.
Under the assumption of i.i.d.βm, thehℓ’s are also i.i.d. with
power σ2

h ∝ 1/W since the number of paths in delay bin

is proportional to1/W . From (12) and (14), we also have
Lσ2

h = σ2 = 1.
In this case, a rich and a sparse channel correspond to the

same physical channel sampled through different signal band-
widths:Wrich > Wsparse. We have the following interpretation
for the sparsity parameterρ

Lsparse

Lrich
=

Wsparse

Wrich
= ρ < 1

which also reflects the ratio between the power in the sampled
hℓ’s in the two cases:

σ2
h,sparse

σ2
h,rich

=
Wrich

Wsparse
=

1

ρ

In this case, number of independent coefficientsL (DoF) gets
smaller for a sparse channel but the power per DoF gets
amplified to keep the total channel power constant.

This case shows that we can transform a fixed physical chan-
nel into a sparse channel by changing the signal bandwidth.
As a consequence, we have the ability to control the sparsity
parameterρ. Thus, the secret key rate curve corresponding to
ρopt in Fig. 1(b) is achievable and, therefore, is the secret key
capacity of the system.
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