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Abstract—Continuous Aperture Phased MIMO (CAP-MIMO)
is a novel transceiver architecture that combines the concept of
beamspace MIMO and analog beamforming to fully exploit the
advantages of high-dimensional MIMO channels with the lowest
possible transceiver complexity. CAP-MIMO theory dictates that
the analog beamformer affect a spatial Fourier transform. A
CAP-MIMO prototype uses a discrete lens array (DLA) designed
for broadside focusing, which approximates the Fourier trans-
form well near broadside but degrades at larger angles. This
paper discusses the optimization of the DLA to achieve a closer
approximation to the Fourier transform over a wider angular
spread. Numerical results obtained using an iterative algorithm
are presented that demonstrate the more uniform performance
achieved by the optimized DLA.

I. I NTRODUCTION

Millimeter-wave communication systems, operating from
30-300 GHz [1], offer unique opportunities for meeting the
increasing data rate demands on wireless communication sys-
tems. In addition to large bandwidths, the small-wavelengths
allow for high-dimensional Multiple-Input Multiple-Output
(MIMO) operation with relatively compact arrays. Continuous
Aperture Phased MIMO (CAP-MIMO) is a novel transceiver
architecture that combines the concept of beamspace MIMO -
multiplexing data onto orthogonal spatial beams - and analog
beamforming [2]. This allows CAP-MIMO to exploit the
expected channel sparsity at mm-wave [1], [3] to achieve
near-optimal performance with the lowest possible transceiver
complexity [2], [4].

CAP-MIMO theory dictates that the ideal beamformer affect
a spatial Fourier transform. However a prototype CAP-MIMO
system makes use of a discrete lens array (DLA) designed for
broadside focusing fed by an array of antennas for analog
beamforming [2], [4]. This DLA design provides a good
approximation to the Fourier transform near broadside that
degrades at wider angles. However, DLAs that more closely
approximate the ideal Fourier transform over a wider angular
spread are desirable for channels with multipath or multiple
users. This paper discusses the optimization of the DLA to
achieve the best approximation of the ideal Fourier transform.

II. DLA M ODELING

CAP-MIMO theory is based on a finite-dimensional system
representation induced by critical sampling of the antenna
apertures. Considering a linear antenna of lengthL, the
critically sampled points are equivalent to an-dimensional

uniform linear array (ULA) of antennas, wheren =
⌊

2L
λ

⌋

is the maximum number of spatial modes supported by the
antenna/ULA [2], [5], [6]. In this setting, the beamformer,
which may be analog or digital, is represented by ann × n
beamforming matrixUb where each column ofUb represents
an array excitation vector corresponding to a fixed beam.

The ideal beamforming matrix is the unitary discrete Fourier
transform (DFT) matrix,Ub = Udft. For critically spaced
ULAs, a plane wave in the direction of angleφ corresponds
to a spatial frequency,θ = 0.5 sin(φ). The columns ofUdft

aren orthogonal, unit-norm array steering/response vectors at
fixed spatial frequencies with uniform spacing∆θo = 1

n
[5]:

Udft = [u (∆θoi)]i∈I(n) , u(θ) =
1√
n

[

e−j2πθℓ
]

ℓ∈I(n)
(1)

where I(n) = {i − (n − 1)/2 : i = 0, · · · , n − 1}. The
beamforming matrix for the DLA,Ub = Udla, is determined
by the DLA’s aperture phase profileψ and the focal surface
geometry(f ,ρ) of then feed antennas, where(fi, ρi) are the
coordinates of the feed antenna intended to create a beam at
φ = sin−1(2∆θoi) (see Fig. 1a).Udla can be decomposed
as Udla = P(ψ)Ufa(f ,ρ), whereP is a diagonal matrix
with Pii = e−jψi that models the aperture phase profile and
Ufa models the propagation between the feed antennas and
the DLA aperture. Letdi denote then× 1 column vector of
distances between the feed antenna with coordinates(fi, ρi)
and the DLA aperture critical sample points. Lethi be the
vector such thathi ◦ di = 1

1. The columns ofUfa are

Ufa = [ũ(fi, ρi)]i∈I(n) , ũ(fi, ρi) = cihi ◦ e−j
2π

λ
di (2)

whereci is a scalar chosen to ensureũ has unit norm. Thus
the columns ofUdla are given by

Udla = [û(ψ, fi, ρi)]i∈I(n) , û(ψ, fi, ρi) = P(ψ)ũ(fi, ρi) .
(3)

III. O PTIMIZATION

To find the DLA that provides the best approximation to
the DFT, we want to find the DLA phase profileψ and focal
surface geometry(f ,ρ) that minimizes the objective function

‖Udft −Udla‖2F =
∑

i∈I(n)

‖u(∆θoi)− û(ψ, fi, ρi)‖22 , (4)

1
◦ is the Hadamard, or entrywise, product and1 is the all ones vector.



which is equivalent to maximizing

Re
[

tr(UH
dftUdla)

]

. (5)

Since the columns ofUdla andUdft correspond to array
excitation vectors, each is defined in terms of some arbitrary
phase origin. While the choice of phase origin does not affect
the beam produced by each column, it does impact the value
of the objective functions (4) and (5). Thus must we replace
Udla with Ũdla = UdlaB, whereB is a diagonal matrix of
all-phase complex numbers.B is found by minimizing (4) over
the phases of the diagonal elementsBii = exp(jγi) for a fixed

ψ, f , andρ, resulting inγi = − 6

[

u (∆θoi)
H
û(ψ, fi, ρi)

]

.

To perform the optimization we adopt an iterative algorithm.
At the kth iterateψk+1, (fk+1,ρk+1), andB

k+1 are calcu-
lated in two steps. First,ψk+1 is calculated by optimizing
with (f ,ρ) = (fk,ρk) and B = B

k fixed. Writing (5) as
Re [tr(MP)] =

∑n

i=1 Re [MiiPii], whereM = UfaBU
H
dft,

it is clear from Pii = exp(−jψi) that the optimalψ is
ψi = 6 Mii. Second,(fk+1,ρk+1) and B

k+1 are updated
by optimizing with ψ = ψk+1 fixed. While there is no
closed form solution, fixingψ does allow (4) to be minimized
by individually minimizing‖u (∆θoi)− û(ψ, fi, ρi)Bii‖22 for
eachi. This is achieved by searching for the minimum over
a specified set of possiblefi and ρi. At each point in the
searching set,Bii is calculated for the fixedψ, fi, and ρi.
The algorithm initializes the DLA toψ0, (f0,ρ0), andB0 for
a broadside focusing DLA with focal distanceFinit [4]. Then
after each iterate the value of (4) for̃Udla(ψ

k+1, fk+1,ρk+1)
is compared to the value for̃Udla(ψ

k, fk,ρk). If it has de-
creased the algorithm continues iterating, otherwise it returns
ψk+1 and (fk+1,ρk+1) as the solution.

IV. N UMERICAL RESULTS

Using this algorithm, we have generated the following
results for a one dimensional DLA of lengthL = 40cm
operating atfc = 10GHz, which results inn = 26. The fi
search values were from25cm to 40cm in 5mm increments
and theρi search values correspond to 51 points uniformly
spaced in spatial frequency about−∆θoi.

The value of (4) is5.94 for the optimized DLA compared
to 15.93 for a broadside focusing DLA withF = 40cm
(‖Udft‖2F = ‖Udla‖2F = n = 26). Fig. 1 shows the focal
surfaces and phase profiles of the initial and optimized DLAs.
It can be seen that most significant change between the initial
and optimized DLAs occurs in the focal surface geometry.
Fig. 2 plots the diagonal values of|UH

dftUb|2 for the ideal DFT
and the optimized and initial DLAs. Physically, the diagonal
values of |UH

dftUb|2 represent how much power each beam
(feed antenna) couples to a far field receiver at the intended
spatial angle. It is clear that the optimized DLA obtains a
much better approximation to the ideal DFT than the broadside
focusing DLA. For instance the optimized DLA stays within
50% (-3dB) of the ideal DFT’s power over an angular range
greater than±60◦ compared to±35◦ for the initial DLA.

V. CONCLUSIONS

We have presented an optimization problem for obtaining
DLA designs that provide a better approximation to the ideal
DFT beamformer. The numerical results, obtained using our
iterative algorithm, demonstrate that the optimized DLA pro-
vides a more uniform performance over a wider angular spread
than the broadside focusing DLA. While our main motivation
has been designing DLAs for CAP-MIMO, the results may
be applied to any application where a DLA with uniform
performance over a wide angular spread is desirable. These
results open several avenues for further research. Extension to
planar apertures will be key in applying these results to actual
DLA prototypes. Although the iterative algorithm converges
to the same solution regardless ofFinit, suggesting that it is
optimal, this is not necessarily the true. Thus joint optimization
overψ and (f ,ρ) should be explored.
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Fig. 1: The focal surface (a) and phase profile (b) of the initial
broadside focusing and optimized DLAs

Fig. 2: Diagonal values of|UH
dftUb|2
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